Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Infect Immun ; 73(7): 4238-44, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15972515

RESUMO

Bacillus anthracis lethal toxin (LT) causes vascular collapse and high lethality in BALB/cJ mice, intermediate lethality in C57BL/6J mice, and no lethality in DBA/2J mice. We found that adrenalectomized (ADX) mice of all three strains had increased susceptibility to LT. The increased susceptibility of ADX-DBA/2J mice was not accompanied by changes in their macrophage sensitivity or cytokine response to LT. DBA/2J mice showed no change in serum corticosteroid levels in response to LT injection, while BALB/cJ mice showed a fivefold increase in serum corticosterone. However, LT inhibited dexamethasone (DEX)-induced glucocorticoid receptor gene activation to similar extents in all three strains. DEX treatment did not rescue ADX mice from LT-mediated mortality. Surprisingly, oral DEX treatment also sensitized adrenally intact DBA/2J mice to LT lethality at all doses tested and also exacerbated LT-mediated pathogenesis and mortality in BALB/cJ mice. Aldosterone did not protect ADX mice from toxin challenge. These results indicate that susceptibility to anthrax LT in mice depends on a fine but easily perturbed balance of endocrine functions. Thus, the potentially detrimental consequences of steroid therapy for anthrax must be considered in treatment protocols for this disease.


Assuntos
Antígenos de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Sistema Hipotálamo-Hipofisário/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia , Adrenalectomia , Aldosterona/uso terapêutico , Animais , Corticosterona/sangue , Citocinas/biossíntese , Dexametasona/farmacologia , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Receptores de Glucocorticoides/fisiologia
2.
Mol Cell Endocrinol ; 241(1-2): 21-31, 2005 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-15964137

RESUMO

Anthrax lethal factor (LF) is a non-competitive repressor of glucocorticoid (GR) and progesterone receptor (PR) transactivation. This repression was shown to be specific and selective and was dependent on promoter context and receptor subtype. Anthrax lethal toxin (LeTx) selectively repressed GR-mediated transactivation but not transrepression. The DNA binding region of GR was required for repression by LeTx and LeTx prevented GR-DNA binding in vivo, which had downstream consequences on polymerase II binding and histone acetylation. In addition, LeTx also prevented the accessory protein C/EBP from binding to a GR-responsive promoter. We hypothesize that LeTx may remove/inactivate one of the many co-factors or accessory proteins that are required to stabilize the GR-DNA complex. These findings enhance the current knowledge of the molecular mechanism by which the anthrax lethal factor represses nuclear hormone receptors and could provide an approach to overcome some of LeTx's effects.


Assuntos
Antígenos de Bactérias/farmacologia , Toxinas Bacterianas/farmacologia , Receptores de Glucocorticoides/metabolismo , Elementos de Resposta/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Animais , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Células COS , Chlorocebus aethiops , Histonas/metabolismo , Ligação Proteica/efeitos dos fármacos , RNA Polimerase II/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo
3.
Ann N Y Acad Sci ; 1024: 9-23, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15265771

RESUMO

Death from anthrax has been reported to occur from systemic shock. The lethal toxin (LeTx) is the major effector of anthrax mortality. Although the mechanism of entry of this toxin into cells is well understood, its actions once inside the cell are not as well understood. LeTx is known to cleave and inactivate MAPKKs. We have recently shown that LeTx represses the glucocorticoid receptor (GR) both in vitro and in vivo. This repression is partial and specific, repressing the glucocorticoid, progesterone, and estrogen receptor alpha, but not the mineralocorticoid or estrogen receptor beta. This toxin does not affect GR ligand or DNA binding, and we have suggested that it may function by removing/inactivating one or more of the many cofactors involved in nuclear hormone receptor signaling. Although the precise involvement of this nuclear hormone receptor repression in LeTx toxicity is unknown, examples of blunted HPA axis and glucocorticoid signaling in numerous autoimmune/inflammatory diseases suggest that such repression of critically important receptors could have deleterious effects on health.


Assuntos
Antígenos de Bactérias/farmacologia , Toxinas Bacterianas/farmacologia , Receptores de Glucocorticoides/antagonistas & inibidores , Animais , Inibidores Enzimáticos/farmacologia , Glucocorticoides/fisiologia , Humanos , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/fisiologia , Doenças do Sistema Imunitário/etiologia , Camundongos , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/fisiologia , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno
4.
J Endocrinol ; 181(2): 207-21, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15128270

RESUMO

The hypothalamic-pituitary-adrenal (HPA) axis is activated during many bacterial and viral infections, resulting in an increase in circulating glucocorticoid levels. This HPA axis activation and glucocorticoid response are critical for the survival of the host, as demonstrated by the fact that removal of the HPA axis (by adrenalectomy or hypophysectomy) or glucocorticoid receptor (GR) blockade enhances the severity of the infection and in some cases enhances the mortality rate. Replacement with a synthetic glucocorticoid reverses these effects by reducing the severity of the infection and provides protection against lethal effects. In addition, some bacteria and viral infections have been shown to affect the GR directly. These have been described and the implications of such an effect discussed.


Assuntos
Infecções Bacterianas/imunologia , Glucocorticoides/metabolismo , Sistema Hipotálamo-Hipofisário/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia , Receptores de Glucocorticoides/metabolismo , Viroses/imunologia , Animais , Infecções Bacterianas/fisiopatologia , Proteínas de Bactérias/metabolismo , Citocinas/imunologia , Humanos , Choque Séptico/metabolismo , Choque Séptico/fisiopatologia , Proteínas Virais/metabolismo , Viroses/fisiopatologia
5.
Arthritis Res Ther ; 5(6): 251-65, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14680500

RESUMO

Inflammation and inflammatory responses are modulated by a bidirectional communication between the neuroendocrine and immune system. Many lines of research have established the numerous routes by which the immune system and the central nervous system (CNS) communicate. The CNS signals the immune system through hormonal pathways, including the hypothalamic-pituitary-adrenal axis and the hormones of the neuroendocrine stress response, and through neuronal pathways, including the autonomic nervous system. The hypothalamic-pituitary-gonadal axis and sex hormones also have an important immunoregulatory role. The immune system signals the CNS through immune mediators and cytokines that can cross the blood-brain barrier, or signal indirectly through the vagus nerve or second messengers. Neuroendocrine regulation of immune function is essential for survival during stress or infection and to modulate immune responses in inflammatory disease. This review discusses neuroimmune interactions and evidence for the role of such neural immune regulation of inflammation, rather than a discussion of the individual inflammatory mediators, in rheumatoid arthritis.


Assuntos
Sistema Imunitário/fisiopatologia , Inflamação/fisiopatologia , Neuroimunomodulação/fisiologia , Sistemas Neurossecretores/fisiopatologia , Animais , Artrite Experimental/imunologia , Artrite Experimental/fisiopatologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/fisiopatologia , Artrite Reumatoide/terapia , Doenças Autoimunes/imunologia , Doenças Autoimunes/fisiopatologia , Doenças Autoimunes/terapia , Sistema Nervoso Autônomo/fisiopatologia , Citocinas/fisiologia , Modelos Animais de Doenças , Humanos , Sistema Hipotálamo-Hipofisário/fisiopatologia , Inflamação/imunologia , Mediadores da Inflamação/fisiologia , Camundongos , Camundongos Mutantes , Neurotransmissores/fisiologia , Sistema Hipófise-Suprarrenal/fisiopatologia , Ratos , Ratos Endogâmicos , Sistemas do Segundo Mensageiro/fisiologia , Nervo Vago/fisiopatologia
6.
Proc Natl Acad Sci U S A ; 100(10): 5706-11, 2003 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-12724519

RESUMO

We report here that a bacterial toxin, anthrax lethal toxin (LeTx), at very low concentrations represses glucocorticoid receptor (GR) transactivation in a transient transfection system and the activity of an endogenous GR-regulated gene in both a cellular system and an animal model. This repression is noncompetitive and does not affect ligand binding or DNA binding, suggesting that anthrax lethal toxin (LeTx) probably exerts its effects through a cofactor(s) involved in the interaction between GR and the basal transcription machinery. LeTx-nuclear receptor repression is selective, repressing GR, progesterone receptor B (PR-B), and estrogen receptor alpha (ERalpha), but not the mineralocorticoid receptor (MR) or ERbeta. GR repression was also caused by selected p38 mitogen-activated protein (MAP) kinase inhibitors, suggesting that the LeTx action may result in part from its known inactivation of MAP kinases. Simultaneous loss of GR and other nuclear receptor activities could render an animal more susceptible to lethal or toxic effects of anthrax infection by removing the normally protective antiinflammatory effects of these hormones, similar to the increased mortality seen in animals exposed to both GR antagonists and infectious agents or bacterial products. These finding have implications for development of new treatments and prevention of the toxic effects of anthrax.


Assuntos
Antígenos de Bactérias , Toxinas Bacterianas/farmacologia , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Progesterona/antagonistas & inibidores , Animais , Bacillus anthracis , Células COS , Chlorocebus aethiops , Dexametasona/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Flavonoides/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Cinética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mifepristona/farmacologia , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Recombinantes/antagonistas & inibidores , Transfecção
7.
Annu Rev Immunol ; 20: 125-63, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-11861600

RESUMO

A reciprocal regulation exists between the central nervous and immune systems through which the CNS signals the immune system via hormonal and neuronal pathways and the immune system signals the CNS through cytokines. The primary hormonal pathway by which the CNS regulates the immune system is the hypothalamic-pituitary-adrenal axis, through the hormones of the neuroendocrine stress response. The sympathetic nervous system regulates the function of the immune system primarily via adrenergic neurotransmitters released through neuronal routes. Neuroendocrine regulation of immune function is essential for survival during stress or infection and to modulate immune responses in inflammatory disease. Glucocorticoids are the main effector end point of this neuroendocrine system and, through the glucocorticoid receptor, have multiple effects on immune cells and molecules. This review focuses on the regulation of the immune response via the neuroendocrine system. Particular details are presented on the effects of interruptions of this regulatory loop at multiple levels in predisposition and expression of immune diseases and on mechanisms of glucocorticoid effects on immune cells and molecules.


Assuntos
Sistemas Neurossecretores/imunologia , Animais , Moléculas de Adesão Celular/imunologia , Citocinas/genética , Glucocorticoides/imunologia , Glucocorticoides/farmacologia , Humanos , Mediadores da Inflamação/imunologia , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Modelos Imunológicos , Neuroimunomodulação , Receptores de Glucocorticoides/imunologia
8.
Toxicology ; 171(2-3): 137-46, 2002 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-11836020

RESUMO

In the present study, we investigated the inducibility of the drug conjugate transporter genes MRP1 and MRP2 by redox-active compounds such as tertiary butylated hydroquinone (tBHQ) and quercetin and by chemicals known to activate the pregnane X receptor (PXR) such as rifampicin and clotrimazol and by the metalloid compound arsenite. The human MRP2 gene was found to be inducible in HepG2 cells by rifampicin, clotrimazol, arsenite and tBHQ. As MRP1 expression is extremely low in HepG2 cells, its inducibility was studied in MCF-7 cells. However, only tBHQ and quercetin acted as inducers, but not the other compounds investigated. Reporter gene assays demonstrated that proximal promoter regions of the genes contribute to the induction by tBHQ, quercetin (MRP1) and clotrimazol (MRP2). However, the deletion of binding sites supposed to mediate the induction process (a PXR-binding element-like sequence for the clotrimazol effect and an ARE (antioxidative response element) for the tBHQ/quercetin effect) did not result in a significant decrease in the induction factor indicating that other parts of the promoter are probably involved in the induction process. In summary, expression of both genes can be up-regulated by redox-active compounds, while the other compounds tested induced only MRP2 but not MRP1 expression.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas Mitocondriais , Proteínas Associadas à Resistência a Múltiplos Medicamentos , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores de Esteroides/agonistas , Proteínas Ribossômicas/genética , Proteínas de Saccharomyces cerevisiae , Arsenitos/farmacologia , Linhagem Celular , Clotrimazol/farmacologia , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Humanos , Hidroquinonas/farmacologia , Proteína 2 Associada à Farmacorresistência Múltipla , Proteína 3 Homóloga a MutS , Oxirredução , Receptor de Pregnano X , Quercetina/farmacologia , RNA Mensageiro/análise , Proteínas Ribossômicas/análise , Proteínas Ribossômicas/biossíntese , Rifampina/farmacologia
9.
J Steroid Biochem Mol Biol ; 82(4-5): 277-88, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12589934

RESUMO

Glucocorticoid resistance is a problem in the treatment of many diseases. One possible factor involved in the modulation of a glucocorticoid response is the export of glucocorticoids out of the cell. It has been shown that multidrug resistance protein 1 (MDR1, ABCB1), a member of the ABC family, is capable of transporting some glucocorticoids. This paper uses a mouse cell line, LMCAT in which the glucocorticoid response can be modulated by inhibitors of multidrug resistance proteins. Glucocorticoids fall into three categories. Firstly, those that are transported by an Abcb1a/Abcb1b transporter and whose transport can be inhibited by inhibitors of ABCB1 activity. Functional Abcb1a/Abcb1b was detected by inhibition of rhodamine efflux by these drugs and mRNA for Abcb1a and Abcb1b were detected in these cells. Secondly, those that are not transported. Finally, those that are transported by an Abcc1a transporter. Calcein transport out of these cells was blocked by treatment with probenecid indicating a functional Abcc1a transporter. Abcc1a mRNA was also detected in these cells. Thus, this paper provides insight into the mechanisms of glucocorticoid transport in cells and demonstrates a diversity of two independent mechanisms of transport of glucocorticoids by Abcb1a/Abcb1b and Abcc1a with individual patterns of steroid specificity.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Ativação Transcricional/efeitos dos fármacos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Transporte Biológico , Células Cultivadas/efeitos dos fármacos , Células Cultivadas/metabolismo , Cloranfenicol O-Acetiltransferase/metabolismo , Primers do DNA/química , Resistência a Múltiplos Medicamentos , Fluoresceínas/metabolismo , Camundongos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Probenecid/farmacologia , Regiões Promotoras Genéticas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Rodaminas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...