Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Haematologica ; 107(8): 1902-1913, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35021601

RESUMO

Germline defects affecting the DNA-binding domain of the transcription factor FLI1 are associated with a bleeding disorder that is characterized by the presence of large, fused α-granules in platelets. We investigated whether the genes showing abnormal expression in FLI1-deficient platelets could be involved in platelet α-granule biogenesis by undertaking transcriptome analysis of control platelets and platelets harboring a DNA-binding variant of FLI1. Our analysis identified 2,276 transcripts that were differentially expressed in FLI1-deficient platelets. Functional annotation clustering of the coding transcripts revealed significant enrichment for gene annotations relating to protein transport, and identified Sorting nexin 24 (SNX24) as a candidate for further investigation. Using an induced pluripotent stem cell-derived megakaryocyte model, SNX24 expression was found to be increased during the early stages of megakaryocyte differentiation and downregulated during proplatelet formation, indicating tight regulatory control during megakaryopoiesis. CRISPR-Cas9 mediated knockout (KO) of SNX24 led to decreased expression of immature megakaryocyte markers, CD41 and CD61, and increased expression of the mature megakaryocyte marker CD42b (P=0.0001), without affecting megakaryocyte polyploidisation, or proplatelet formation. Electron microscopic analysis revealed an increase in empty membrane-bound organelles in SNX24 KO megakaryocytes, a reduction in α-granules and an absence of immature and mature multivesicular bodies, consistent with a defect in the intermediate stage of α-granule maturation. Co-localization studies showed that SNX24 associates with each compartment of α-granule maturation. Reduced expression of CD62P and VWF was observed in SNX24 KO megakaryocytes. We conclude that SNX24 is required for α-granule biogenesis and intracellular trafficking of α-granule cargo within megakaryocytes.


Assuntos
Megacariócitos , Nexinas de Classificação , Humanos , Plaquetas/metabolismo , Grânulos Citoplasmáticos/metabolismo , DNA , Megacariócitos/metabolismo , Transporte Proteico , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo
2.
Blood Adv ; 4(13): 2979-2990, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32609846

RESUMO

Copy number variation (CNV) is known to cause all von Willebrand disease (VWD) types, although the associated pathogenic mechanisms involved have not been extensively studied. Notably, in-frame CNV provides a unique opportunity to investigate how specific von Willebrand factor (VWF) domains influence the processing and packaging of the protein. Using multiplex ligation-dependent probe amplification, this study determined the extent to which CNV contributed to VWD in the Molecular and Clinical Markers for the Diagnosis and Management of Type 1 von Willebrand Disease cohort, highlighting in-frame deletions of exons 3, 4-5, 32-34, and 33-34. Heterozygous in vitro recombinant VWF expression demonstrated that, although deletion of exons 3, 32-34, and 33-34 all resulted in significant reductions in total VWF (P < .0001, P < .001, and P < .01, respectively), only deletion of exons 3 and 32-34 had a significant impact on VWF secretion (P < .0001). High-resolution microscopy of heterozygous and homozygous deletions confirmed these observations, indicating that deletion of exons 3 and 32-34 severely impaired pseudo-Weibel-Palade body (WPB) formation, whereas deletion of exons 33-34 did not, with this variant still exhibiting pseudo-WPB formation similar to wild-type VWF. In-frame deletions in VWD, therefore, contribute to pathogenesis via moderate or severe defects in VWF biosynthesis and secretion.


Assuntos
Doença de von Willebrand Tipo 1 , Doenças de von Willebrand , Variações do Número de Cópias de DNA , Humanos , Corpos de Weibel-Palade , Doenças de von Willebrand/diagnóstico , Doenças de von Willebrand/genética , Fator de von Willebrand/genética
3.
Semin Thromb Hemost ; 45(7): 674-684, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31382308

RESUMO

With the advent of large-scale next-generation sequencing initiatives, there is an increasing importance to interpret and understand the potential phenotypic influence of identified genetic variation and its significance in the human genome. Bioinformatics analyses can provide useful information to assist with variant interpretation. This review provides an overview of tools/resources currently available, and how they can help predict the impact of genetic variation at the deoxyribonucleic acid, ribonucleic acid, and protein level.


Assuntos
Biologia Computacional/métodos , Educação a Distância/métodos , Variação Genética/genética , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...