Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 736: 139362, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32497893

RESUMO

Prevention of excessive periphyton standing crop (quantified as chlorophyll a) is among primary objectives for river management. Defensible instream nutrient criteria to achieve periphyton chlorophyll a targets at the site scale require robust predictive models. Such models have proved elusive because peak chlorophyll a depends on multiple factors in addition to nutrients. A key predictor may be accrual period, which depends on river flow variability and the flow magnitudes (effective flows, EF) at which periphyton biomass removal is initiated. In this study we used a seven-year dataset from 44 gravel-bed river sites in the Manawatu-Whanganui region, New Zealand, to explore the relative importance of accrual period, nutrients, and other variables in explaining peak chlorophyll a, using a regression approach. We also assessed the effect of combining data from multiple years. Previous empirical studies have used a universal flow metric (3 × median flow) to define accrual period (Da3). We calculated site-specific EF, which varied from 2 × to 15 × median flow. Accrual period based on EF (DaEF) outperformed Da3 in models. However, in the study region, more variance in chlorophyll a was explained by conductivity (EC) and dissolved inorganic nitrogen (DIN) than by DaEF. The best models derived from multi-year datasets included EC, DIN and DaEF as predictors and accounted for up to 82% of the variance in peak chlorophyll a. Models from annual data were weaker and more variable in strength and predictors. The models indicated that EC and DaEF should be considered when setting DIN criteria for periphyton outcomes in the study region. The principles we used in developing the models may have broad relevance to the management of periphyton in other regions.


Assuntos
Perifíton , Clorofila/análise , Clorofila A , Monitoramento Ambiental , Nova Zelândia , Nitrogênio , Qualidade da Água
2.
Environ Toxicol Chem ; 29(9): 1984-93, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20821656

RESUMO

As part of a larger study investigating the fate and effects of brominated volatile organic compounds (VOCs) in contaminated groundwaters discharging to surface waters, the toxicity of 1,2 dibromoethene (DBE) and 1,1,2-tribromoethene (TriBE) to freshwater aquatic biota was investigated. Their toxicity to bacteria (Microtox(R)), microalgae (Chlorella sp.), cladocerans (Ceriodaphnia dubia), duckweed (Lemna sp.) and midges (Chironomus tepperi) was determined after careful optimization of the test conditions to minimize chemical losses throughout the tests. In addition, concentrations of DBE and TriBE were carefully monitored throughout the bioassays to ensure accurate calculation of toxicity values. 1,2-Dibromoethene showed low toxicity to most species, with concentrations to cause 50% lethality or effect (LC/EC50 values) ranging from 28 to 420 mg/L, 10% lethality or effect (LC/EC10 values) ranging from 18 to 94 mg/L and no-observed-effect concentrations (NOECs) ranging from 22 to 82 mg/L. 1,1,2-Tribromoethene was more toxic than DBE, with LC/EC50 values of 2.4 to 18 mg/L, LC/EC10 values of 0.94 to 11 mg/L and NOECs of 0.29 to 13 mg/L. Using these limited data, together with data from the only other published study on TriBE, moderate-reliability water quality guidelines (WQGs) were estimated from species sensitivity distributions. The proposed guideline trigger values for 95% species protection with 50% confidence were 2 mg/L for DBE and 0.03 mg/L for TriBE. The maximum concentrations of DBE and TriBE in nearby surface waters (3 and 1 microg /L, respectively) were well below these WQGs, so the risk to the freshwater environment receiving contaminated groundwater inflows was considered to be low, with hazard quotients <1 for both VOCs. Environ.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Dibrometo de Etileno/análogos & derivados , Etilenos/toxicidade , Compostos Orgânicos Voláteis/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biota , Chironomidae/efeitos dos fármacos , Chlorella/efeitos dos fármacos , Cladocera/efeitos dos fármacos , Dibrometo de Etileno/toxicidade , Água Doce/química , Vibrio/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...