Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e27406, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38496885

RESUMO

The intangible desire to explore the mysteries of the universe has driven numerous advancements for humanity for centuries. Extraterrestrial journeys are becoming more realistic as a result of human curiosity and endeavors. Over the years, space biology research has played a significant role in understanding the hazardous effects of the space environment on human health during long-term space travel. The inevitable consequence of a space voyage is space ionizing radiation, which has deadly aftereffects on the human body. The paramount objective of this study is to provide a robust platform for performing biological experiments within the Earth's stratosphere by utilizing high-altitude balloons. This platform allows the use of a biological payload to simulate spaceflight missions within the unique properties of space that cannot be replicated in terrestrial facilities. This paper describes the feasibility and demonstration of a biological balloon mission suitable for students and scientists to perform space biology experiments within the boundary of the stratosphere. In this study, a high-altitude balloon was launched into the upper atmosphere (∼29 km altitude), where living microorganisms were exposed to a hazardous combination of UV irradiation, ultralow pressure and cold shock. The balloon carried the budding yeast Saccharomyces cerevisiae to investigate microbial survival potential under extreme conditions. The results indicated a notable reduction in biosample mortality two orders of magnitude (2-log) after exposure to 164.9 kJ m-2 UV. Postflight experiments have shown strong evidence that the effect of UV irradiation on living organisms is stronger than that of other extreme conditions.

2.
Cogn Neurodyn ; 11(2): 117-134, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28348644

RESUMO

Currently, electric wheelchairs are commonly used to improve mobility in disabled people. In severe cases, the user is unable to control the wheelchair by themselves because his/her motor functions are disabled. To restore mobility function, a brain-controlled wheelchair (BCW) would be a promising system that would allow the patient to control the wheelchair by their thoughts. P300 is a reliable brain electrical signal, a component of visual event-related potentials (ERPs), that could be used for interpreting user commands. This research aimed to propose a prototype BCW to allowed severe motor disabled patients to practically control a wheelchair for use in their home environment. The users were able to select from 9 possible destination commands in the automatic mode and from 4 directional commands (forward, backward, turn left and right) in the shared-control mode. These commands were selected via the designed P300 processing system. The wheelchair was steered to the desired location by the implemented navigation system. Safety of the user was ensured during wheelchair navigation due to the included obstacle detection and avoidance features. A combination of P300 and EOG was used as a hybrid BCW system. The user could fully operate the system such as enabling P300 detection system, mode shifting and stop/cancelation command by performing a different consecutive blinks to generate eye blinking patterns. The results revealed that the prototype BCW could be operated in either of the proposed modes. With the new design of the LED-based P300 stimulator, the average accuracies of the P300 detection algorithm in the shared-control and automatic modes were 95.31 and 83.42% with 3.09 and 3.79 bits/min, respectively. The P300 classification error was acceptable, as the user could cancel an incorrect command by blinking 2 times. Moreover, the proposed navigation system had a flexible design that could be interfaced with other assistive technologies. This research developed 3 alternative input modules: an eye tracker module and chin and hand controller modules. The user could select the most suitable assistive technology based on his/her level of disability. Other existing assistive technologies could also be connected to the proposed system in the future using the same protocol.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA