Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
2.
Theor Appl Genet ; 136(4): 91, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37009963

RESUMO

KEY MESSAGE: This is the first identification of QTLs underlying resistance in Cucumis melo to an isolate of Pseudoperonospora cubensis identified as Clade 2/mating type A1. Pseudoperonospora cubensis, causal organism of cucurbit downy mildew (CDM), causes severe necrosis and defoliation on Cucumis melo (melon). A recombinant inbred line population (N = 169) was screened against an isolate of P. cubensis (Clade 2/mating type A1) in replicated greenhouse and growth chamber experiments. SNPs (n = 5633 bins) identified in the RIL population were used for quantitative trait loci (QTL) mapping. A single major QTL on chromosome 10 (qPcub-10.3-10.4) was consistently associated with resistance across all experiments, while a second major QTL on chromosome 8 (qPcub-8.3) was identified only in greenhouse experiments. These two major QTLs were identified on the same chromosomes (8 and 10) but in different locations as two major QTLs (qPcub-8.2 and qPcub-10.1) previously identified for resistance to P. cubensis Clade 1/mating type A2. Kompetitive allele-specific PCR (KASP) markers were developed for these four major QTLs and validated in the RIL population through QTL mapping. These markers will provide melon breeders a high-throughput genotyping toolkit for development of melon cultivars with broad tolerance to CDM.


Assuntos
Cucumis melo , Cucurbitaceae , Oomicetos , Peronospora , Locos de Características Quantitativas , Cucumis melo/genética , Doenças das Plantas/genética , Cucurbitaceae/genética
3.
Plant Dis ; 107(7): 2126-2132, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36548923

RESUMO

Meloidogyne enterolobii is a virulent species of root-knot nematode that threatens watermelon (Citrullus lanatus) production in the southeastern United States. There are no known sources of root-knot nematode resistance in cultivated C. lanatus. Specific genotypes of a wild watermelon relative, C. amarus, are resistant against M. incognita but the genetics that underly this resistance are still unknown and it is not clear that this same resistance will be effective against M. enterolobii. To identify and characterize new sources of resistance to M. enterolobii, we screened 108 diverse C. amarus lines alongside a susceptible C. lanatus cultivar (Charleston Gray) for resistance against M. enterolobii. Different C. amarus genotypes ranged from resistant to susceptible for the three resistance phenotypes measured; mean percent root system galled ranged from 10 to 73%, mean egg mass counts ranged from 0.3 to 64.5, and mean eggs per gram of root ranged from 326 to 146,160. We used each of these three resistance phenotypes combined with whole-genome resequencing data to conduct a genome-wide association scan that identified significant associations between M. enterolobii resistance and 11 single-nucleotide polymorphisms (SNPs) within the C. amarus genome. Interestingly, SNPs associated with reduced galling and egg masses were located within a single quantitative trait locus (QTL) on chromosome Ca03, while reductions in nematode eggs per gram of root were associated with separate QTL on chromosomes Ca04 and Ca08. The results of this study suggest that multiple genes are involved with M. enterolobii resistance in C. amarus and the SNPs identified will assist with efforts to breed for M. enterolobii resistance in watermelon.


Assuntos
Citrullus , Resistência à Doença , Tylenchoidea , Animais , Estudo de Associação Genômica Ampla , Doenças das Plantas
4.
Nucleic Acids Res ; 51(D1): D1457-D1464, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36271794

RESUMO

The Cucurbitaceae (cucurbit) family consists of about 1,000 species in 95 genera, including many economically important and popular fruit and vegetable crops. During the past several years, reference genomes have been generated for >20 cucurbit species, and variome and transcriptome profiling data have been rapidly accumulated for cucurbits. To efficiently mine, analyze and disseminate these large-scale datasets, we have developed an updated version of Cucurbit Genomics Database. The updated database, CuGenDBv2 (http://cucurbitgenomics.org/v2), currently hosts 34 reference genomes from 27 cucurbit species/subspecies belonging to 10 different genera. Protein-coding genes from these genomes have been comprehensively annotated by comparing their protein sequences to various public protein and domain databases. A novel 'Genotype' module has been implemented to facilitate mining and analysis of the functionally annotated variome data including SNPs and small indels from large-scale genome sequencing projects. An updated 'Expression' module has been developed to provide a comprehensive gene expression atlas for cucurbits. Furthermore, synteny blocks between any two and within each of the 34 genomes, representing a total of 595 pair-wise genome comparisons, have been identified and can be explored and visualized in the database.


Assuntos
Cucurbitaceae , Genoma de Planta , Genômica , Sintenia , Cucurbitaceae/genética , Bases de Dados Factuais , Bases de Dados Genéticas
5.
Plant Dis ; 106(2): 711-719, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34579551

RESUMO

Watermelon is an important cucurbit vegetable crop grown in most of the United States. Phytophthora fruit rot of watermelon caused by Phytophthora capsici has been a major factor, limiting production for the past 15 years in the southeastern United States. The U.S. Department of Agriculture, Agricultural Research Service released five Phytophthora fruit rot-resistant germplasm lines for use in breeding programs. These lines were developed by phenotyping using a local isolate of P. capsici from South Carolina. The present study was undertaken to determine if these resistant lines had broad resistance to diverse P. capsici isolates collected from different states and crops. Five resistant germplasm lines (USVL020-PFR, USVL203-PFR, USVL782-PFR, USVL489-PFR, and USVL531-MDR) and two susceptible cultivars, Sugar Baby and Mickey Lee, used as checks were grown in a field in 2014 and 2015 to produce fruit for evaluation. Mature fruit were harvested and placed in a walk-in growth chamber and inoculated with 20 different P. capsici isolates. The chamber was maintained at 26 ± 2°C and high relative humidity (>95%) using a humidifier. All five resistant germplasm lines were significantly more resistant than the two susceptible checks to all 20 P. capsici isolates. Among the five resistant germplasm lines, USVL020-PFR, USVL782-PFR, and USVL531-MDR had broad resistance. Some P. capsici isolates induced minor lesions and rot on USVL489-PFR compared with the other resistant lines. Variation in virulence and genetic diversity among the 20 P. capsici isolates was also observed. The five watermelon germplasm lines will be useful for developing commercial watermelon cultivars with broad resistance to P. capsici.


Assuntos
Citrullus , Phytophthora , Citrullus/genética , Resistência à Doença/genética , Frutas , Phytophthora/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Estados Unidos
6.
Plant Dis ; 106(7): 1952-1958, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34941369

RESUMO

Cultivated sweet watermelon (Citrullus lanatus) is an important vegetable crop for millions of people around the world. There are limited sources of resistance to economically important diseases within C. lanatus, whereas C. amarus has a reservoir of traits that can be exploited to improve C. lanatus for resistance to biotic and abiotic stresses. Cucurbit downy mildew (CDM), caused by Pseudoperonospora cubensis, is an emerging threat to watermelon production. We screened 122 C. amarus accessions for resistance to CDM over two tests (environments). The accessions were genotyped by whole-genome resequencing to generate 2,126,759 single nucleotide polymorphic (SNP) markers. A genome-wide association study was deployed to uncover marker-trait associations and identify candidate genes underlying resistance to CDM. Our results indicate the presence of wide phenotypic variability (1.1 to 57.8%) for leaf area infection, representing a 50.7-fold variation for CDM resistance across the C. amarus germplasm collection. Broad-sense heritability estimate was 0.55, implying the presence of moderate genetic effects for resistance to CDM. The peak SNP markers associated with resistance to P. cubensis were located on chromosomes Ca03, Ca05, Ca07, and Ca11. The significant SNP markers accounted for up to 30% of the phenotypic variation and were associated with promising candidate genes encoding leucine-rich repeat receptor-like protein kinase and the WRKY transcription factor. This information will be useful in understanding the genetic architecture of the P. cubensis-Citrullus spp. patho-system as well as development of resources for genomics-assisted breeding for resistance to CDM in watermelon.


Assuntos
Citrullus , Resistência à Doença , Oomicetos , Peronospora , Doenças das Plantas , Mapeamento Cromossômico , Citrullus/genética , Citrullus/microbiologia , Resistência à Doença/genética , Estudos de Associação Genética , Oomicetos/patogenicidade , Peronospora/patogenicidade , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único
7.
Plant Dis ; 105(12): 3809-3815, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34253041

RESUMO

Powdery mildew, caused by the fungus Podosphaera xanthii, is one of the most important diseases of melon. Although there are several pathogenic races of P. xanthii, race 1 is the predominant race in South Carolina and in other parts of the United States. We used a densely genotyped recombinant inbred line melon population for traditional quantitative trait loci (QTL) mapping, to identify two major (qPx1-5 and qPx1-12) and two minor (qPx1-4 and qPx1-10) QTLs (named according to race - chromosome number) associated with resistance to P. xanthii race 1. QTL mapping of disease severity in multiple tissues (hypocotyl, cotyledons, true leaves, and stems) identified the same genetic basis of resistance in all tissue types. Whole-genome resequencing of the parents was used for marker development across the major QTLs and functional annotation of single nucleotide polymorphisms (SNPs) for candidate gene analysis. Kompetitive allele-specific PCR (KASP) markers were tightly linked to the QTL peaks of qPx1-5 (pm1-5_25329892, pm1-5_25461503 and pm1-5_25625375) and qPx1-12 (pm1-12_22848920 and pm1-12_22904659) in the population and will enable efficient marker-assisted introgression of powdery mildew resistance into improved germplasm. Candidate genes were identified in both major QTL intervals that encode putative R genes with missense mutations between the parents. The candidate genes provide targets for future breeding efforts and a fundamental examination of resistance to powdery mildew in melon.


Assuntos
Cucurbitaceae , Resistência à Doença/genética , Doenças das Plantas , Locos de Características Quantitativas , Ascomicetos/patogenicidade , Mapeamento Cromossômico , Cucurbitaceae/genética , Cucurbitaceae/microbiologia , Genótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
8.
Theor Appl Genet ; 134(8): 2577-2586, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33950283

RESUMO

KEY MESSAGE: This is the first identification of QTLs underlying resistance to Pseudoperonospora cubensis in Cucumis melo using a genetically characterized isolate. Pseudoperonospora cubensis, causal organism of cucurbit downy mildew (CDM), is one of the largest threats to cucurbit production in the eastern USA. Currently, no Cucumis melo (melon) cultivars have significant levels of resistance. Additionally, little is understood about the genetic basis of resistance in C. melo. Recombinant inbred lines (RILs; N = 169) generated from a cross between the resistant melon breeding line MR-1 and susceptible cultivar Ananas Yok'neam were phenotyped for CDM resistance in both greenhouse and growth chamber studies. A high-density genetic linkage map with 5,663 binned SNPs created from the RIL population was utilized for QTL mapping. Nine QTLs, including two major QTLs, were associated with CDM resistance. Of the major QTLs, qPcub-10.1 was stable across growth chamber and greenhouse tests, whereas qPcub-8.2 was detected only in growth chamber tests. qPcub-10.1 co-located with an MLO-like protein coding gene, which has been shown to confer resistance to powdery mildew and Phytophthora in other plants. This is the first screening of C. melo germplasm with a genetically characterized P. cubensis isolate.


Assuntos
Ascomicetos/fisiologia , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Cucumis melo/genética , Resistência à Doença/imunologia , Doenças das Plantas/imunologia , Locos de Características Quantitativas , Cucumis melo/crescimento & desenvolvimento , Cucumis melo/microbiologia , Resistência à Doença/genética , Ligação Genética , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Reprodução
9.
Front Plant Sci ; 11: 1097, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32793259

RESUMO

Elemental sulfur is an effective, inexpensive fungicide for many foliar pathogens, but severe phytotoxicity prohibits its use on many melon varieties. Sulfur phytotoxicity causes chlorosis and necrosis of leaf tissue, leading to plant death in the most sensitive lines, while other varieties have little to no damage. A high-density, genotyping-by-sequencing (GBS)-based genetic map of a recombinant inbred line (RIL) population segregating for sulfur tolerance was used for a quantitative trait loci (QTL) mapping study of sulfur phytotoxicity in melon. One major (qSulf-1) and two minor (qSulf-8 and qSulf-12) QTL were associated with sulfur tolerance in the population. The development of Kompetitive Allele-Specific PCR (KASP) markers developed across qSulf-1 decreased the QTL interval from 239 kb (cotyledons) and 157 kb (leaves) to 97 kb (both tissues). The markers were validated for linkage to sulfur tolerance in a set of melon cultivars. These KASP markers can be incorporated into melon breeding programs for introgression of sulfur tolerance into elite melon germplasm.

10.
Plant Dis ; 104(9): 2481-2488, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32628091

RESUMO

Fusarium wilt of watermelon (Citrullus lanatus), caused by the soilborne fungus Fusarium oxysporum f. sp. niveum, is the most serious disease of watermelon in South Carolina and other southeastern U.S. states. Isolates of F. oxysporum collected from field-grown plants, greenhouse-grown seedlings, and field soil between 1999 and 2018 were inoculated onto three differential watermelon cultivars to identify races. Of 197 isolates obtained from plants, 12% were nonpathogenic, 2% were race 0, 23% were race 1, and 63% were race 2. One collection of isolates from greenhouse seedlings was exclusively race 1 and the other was exclusively race 2. Seventeen of 81 soil isolates were pathogenic: five were race 1 and 12 were race 2. Reactions of C. amarus PI 296341-FR, Carolina Strongback, and SP-6, cultigens with resistance to race 2, did not differ significantly among five highly virulent race 2 isolates and a standard race 2 isolate, indicating a lack of a race 3 phenotype. Forma specialis-specific primers matched phenotypic race identification for 74% of the isolates. Race-specific primers based on a secreted-in-xylem elicitor present in race 0 and 1 isolates matched phenotypic race identification for 66% of the isolates. Because a majority of the F. oxysporum f. sp. niveum isolates from South Carolina were race 2, integrated management practices should be used until commercial cultivars with resistance to race 2 are available.


Assuntos
Citrullus , Fusarium , Doenças das Plantas , Plântula , Solo , South Carolina , Sudeste dos Estados Unidos
11.
Theor Appl Genet ; 133(2): 677-687, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31822938

RESUMO

KEY MESSAGE: A Citrullus amarus mapping population segregating for resistance to Fusarium oxysporum f. sp. niveum race 2 and Papaya ringspot virus was used to identify novel QTL, important for the improvement in watermelon disease resistance. Multiple disease screens of the USDA Citrullus spp. germplasm collection have highlighted the value of Citrullus amarus (citron melon or wild watermelon) as a resource for enhancing modern watermelon cultivars (Citrullus lanatus) with resistance to a broad range of fungal, bacterial and viral diseases of watermelon. We have generated a genetic population of C. amarus segregating for resistance to two important watermelon diseases: Fusarium wilt (caused by the fungus Fusarium oxysporum f. sp. niveum; Fon race 2) and Papaya ringspot virus-watermelon strain (PRSV-W). QTL mapping of Fon race 2 resistance identified seven significant QTLs, with the major QTL representing a novel genetic source of resistance and an opportunity for gene pyramiding. A single QTL was associated with resistance to PRSV-W, which adhered to expectations of a prior study indicating a single-gene recessive inheritance in watermelon. The resistance loci identified here provide valuable genetic resources for introgression into cultivated watermelon for the improvement in disease resistance.


Assuntos
Citrullus/genética , Resistência à Doença/genética , Fusarium/patogenicidade , Doenças das Plantas/genética , Potyvirus/patogenicidade , Mapeamento Cromossômico , Citrullus/metabolismo , Citrullus/fisiologia , Resistência à Doença/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Locos de Características Quantitativas
12.
Plant Dis ; 103(6): 1383-1390, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30958108

RESUMO

Interspecific hybrid squash (Cucurbita maxima × Cucurbita moschata) rootstocks used to graft watermelon (Citrullus lanatus var. lanatus) are resistant to Fusarium oxysporum f. sp. niveum, the fungus that causes Fusarium wilt of watermelon, but they are susceptible to Meloidogyne incognita, the southern root knot nematode. A new citron (Citrullus amarus) rootstock cultivar Carolina Strongback is resistant to F. oxysporum f. sp. niveum and M. incognita. The objective of this study was to determine if an interaction between M. incognita and F. oxysporum f. sp. niveum race 2 occurred on grafted or nongrafted triploid watermelon susceptible to F. oxysporum f. sp. niveum race 2. In 2016 and 2018, plants of nongrafted cultivar Fascination and Fascination grafted onto Carolina Strongback and interspecific hybrid squash cultivar Carnivor were inoculated or not inoculated with M. incognita before transplanting into field plots infested or not infested with F. oxysporum f. sp. niveum race 2. Incidence of Fusarium wilt and area under the disease progress curve did not differ when hosts were inoculated with F. oxysporum f. sp. niveum alone or F. oxysporum f. sp. niveum and M. incognita together. Fusarium wilt was greater on nongrafted watermelon (78% mean incidence) than on both grafted rootstocks and lower on Carnivor (1% incidence) than on Carolina Strongback (12% incidence; P ≤ 0.01). Plants not inoculated with F. oxysporum f. sp. niveum did not wilt. At the end of the season, Carnivor had a greater percentage of the root system galled than the other two hosts, whereas galling did not differ on Fascination and Carolina Strongback. F. oxysporum f. sp. niveum reduced marketable weight of nongrafted Fascination with and without coinoculation with M. incognita. M. incognita reduced marketable weight of Fascination grafted onto Carnivor compared with noninoculated, nongrafted Fascination. In conclusion, cucurbit rootstocks that are susceptible and resistant to M. incognita retain resistance to F. oxysporum f. sp. niveum when they are coinfected with M. incognita.


Assuntos
Cucurbita , Resistência à Doença , Fusarium , Infecções por HIV , Tylenchoidea , Animais , Cucurbita/microbiologia , Cucurbita/parasitologia , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Tylenchoidea/fisiologia
13.
Plant Dis ; 103(5): 984-989, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30856077

RESUMO

Fusarium wilt race 1, caused by the soilborne fungus Fusarium oxysporum Schlechtend.: Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon), is a major disease of watermelon (Citrullus lanatus) in the United States and throughout the world. Although Fusarium wilt race 1 resistance has been incorporated into several watermelon cultivars, identification of additional genetic sources of resistance is crucial if a durable and sustainable level of resistance is to be continued over the years. We conducted a genetic mapping study to identify quantitative trait loci (QTLs) associated with resistance to Fon race 1 in segregating populations (F2:3 and recombinant inbred lines) of Citrullus amarus (citron melon) derived from the Fon race 1 resistant and susceptible parents USVL246-FR2 and USVL114, respectively. A major QTL (qFon1-9) associated with resistance to Fon race 1 was identified on chromosome 9 of USVL246-FR2. This discovery provides a novel genetic source of resistance to Fusarium wilt race 1 in watermelon and, thus, an additional host-resistance option for watermelon breeders to further the effort to mitigate this serious phytopathogen.


Assuntos
Citrullus , Resistência à Doença , Fusarium , Locos de Características Quantitativas , Mapeamento Cromossômico , Citrullus/genética , Citrullus/microbiologia , Resistência à Doença/genética , Fusarium/fisiologia
14.
Phytopathology ; 109(7): 1217-1225, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30773987

RESUMO

Bacterial spot Xanthomonas species cause significant disease outbreaks on tomato and pepper in tropical and subtropical regions throughout the world. Host resistance has been one of the key components of integrated disease management approaches to mitigate plant pathogens. Although a number of resistance genes have been identified in pepper against bacterial spot xanthomonads, emergence of bacterial spot pathogen variants capable of overcoming these sources and changing pathogen distributions reinforce the importance of identifying novel candidates to incorporate into breeding programs. We conducted a genome-wide association study (GWAS) on a diverse U.S. Department of Agriculture collection of pepper germplasm including different species of Capsicum to identify novel sources of disease resistance against a highly virulent X. gardneri strain isolated from a recent outbreak. GWAS identified highly significant single nucleotide polymorphisms associated with defoliation in response to infection with X. gardneri. Functionally relevant candidate genes encoded products involved in disease resistance/susceptibility, hormone signaling, and basal resistance against multiple pathogens in various host-pathogen systems. The X. gardneri-resistant genotypes and quantitative trait loci identified in this study provide alleles that could be used for a resistance gene pyramiding effort against different species of bacterial spot xanthomonads in pepper.


Assuntos
Capsicum , Doenças das Plantas/microbiologia , Xanthomonas , Capsicum/microbiologia , Resistência à Doença , Estudo de Associação Genômica Ampla , Estados Unidos , United States Department of Agriculture , Xanthomonas/patogenicidade
15.
Theor Appl Genet ; 132(5): 1463-1471, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30739153

RESUMO

KEY MESSAGE: Six QTLs were associated with affected leaf area in response to inoculation with Acidovorax citrulli in a recombinant inbred line population of Citrullus amarus. Acidovorax citrulli, the causal agent of bacterial fruit blotch (BFB) of cucurbits, has the potential to devastate production of watermelon and other cucurbits. Despite decades of research on host-plant resistance to A. citrulli, no germplasm has been found with immunity and only a few sources with various levels of BFB resistance have been identified, but the genetic basis of resistance in these watermelon sources are not known. Most sources of resistance are plant introductions of Citrullus amarus (citron melon), a closely related species that crosses readily with cultivated watermelon (Citrullus lanatus L.). In this study, we evaluated a recombinant inbred line population (N = 200), derived from a cross between BFB-resistant (USVL246-FR2) and BFB-susceptible (USVL114) C. amarus lines, for foliar resistance to A. citrulli in three replicated greenhouse trials. We found the genetics of BFB resistance to be complicated by strong environmental influence, low heritability and significant genotype-by-environment interactions. QTL mapping of affected leaf area identified six QTL that each explained between 5 and 15% of the variation in BFB resistance in the population. This study represents the first identification of QTL associated with resistance to A. citrulli in any cucurbit.


Assuntos
Citrullus/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Citrullus/microbiologia , Comamonadaceae , Doenças das Plantas/microbiologia , Locos de Características Quantitativas
16.
Nucleic Acids Res ; 47(D1): D1128-D1136, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30321383

RESUMO

The Cucurbitaceae family (cucurbit) includes several economically important crops, such as melon, cucumber, watermelon, pumpkin, squash and gourds. During the past several years, genomic and genetic data have been rapidly accumulated for cucurbits. To store, mine, analyze, integrate and disseminate these large-scale datasets and to provide a central portal for the cucurbit research and breeding community, we have developed the Cucurbit Genomics Database (CuGenDB; http://cucurbitgenomics.org) using the Tripal toolkit. The database currently contains all available genome and expressed sequence tag (EST) sequences, genetic maps, and transcriptome profiles for cucurbit species, as well as sequence annotations, biochemical pathways and comparative genomic analysis results such as synteny blocks and homologous gene pairs between different cucurbit species. A set of analysis and visualization tools and user-friendly query interfaces have been implemented in the database to facilitate the usage of these large-scale data by the community. In particular, two new tools have been developed in the database, a 'SyntenyViewer' to view genome synteny between different cucurbit species and an 'RNA-Seq' module to analyze and visualize gene expression profiles. Both tools have been packed as Tripal extension modules that can be adopted in other genomics databases developed using the Tripal system.


Assuntos
Biologia Computacional/métodos , Produtos Agrícolas/genética , Cucurbita/genética , Bases de Dados Genéticas , Genoma de Planta/genética , Genômica/métodos , Biologia Computacional/estatística & dados numéricos , Produtos Agrícolas/classificação , Produtos Agrícolas/crescimento & desenvolvimento , Cucurbita/classificação , Cucurbita/crescimento & desenvolvimento , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica/métodos , Armazenamento e Recuperação da Informação/métodos , Internet , Especificidade da Espécie , Sintenia
17.
Theor Appl Genet ; 131(4): 829-837, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29372283

RESUMO

KEY MESSAGE: Four QTLs and an epistatic interaction were associated with disease severity in response to inoculation with Fusarium oxysporum f. sp. melonis race 1 in a recombinant inbred line population of melon. The USDA Cucumis melo inbred line, MR-1, harbors a wealth of alleles associated with resistance to several major diseases of melon, including powdery mildew, downy mildew, Alternaria leaf blight, and Fusarium wilt. MR-1 was crossed to an Israeli cultivar, Ananas Yok'neam, which is susceptible to all of these diseases, to generate a recombinant inbred line (RIL) population of 172 lines. In this study, the RIL population was genotyped to construct an ultra-dense genetic linkage map with 5663 binned SNPs anchored to the C. melo genome and exhibits the overall high quality of the assembly. The utility of the densely genotyped population was demonstrated through QTL mapping of a well-studied trait, resistance to Fusarium wilt caused by Fusarium oxysporum f. sp. melonis (Fom) race 1. A major QTL co-located with the previously validated resistance gene Fom-2. In addition, three minor QTLs and an epistatic interaction contributing to Fom race 1 resistance were identified. The MR-1 × AY RIL population provides a valuable resource for future QTL mapping studies and marker-assisted selection of disease resistance in melon.


Assuntos
Cucumis melo/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Cucumis melo/microbiologia , Epistasia Genética , Fusarium , Ligação Genética , Genótipo , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único
18.
Theor Appl Genet ; 130(2): 319-330, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27803951

RESUMO

KEY MESSAGE: A major QTL for resistance to Fusarium oxysporum f. sp. niveum race 2 was mapped to a narrow 1.2 Mb interval using a high-density GBS-SNP linkage map, the first map of Citrullus lanatus var. citroides. Fusarium wilt, a fungal disease caused by Fusarium oxysporum f. sp. niveum (Fon), devastates watermelon crop production worldwide. Several races, which are differentiated by host range, of the pathogen exist. Resistance to Fon race 2, a particularly virulent strain prevalent in the United States, does not exist in edible cultivars of the sweet cultivated watermelon Citrullus lanatus var. lanatus (Cll) and has been well described in a few plant introductions of the wild subspecies of watermelon, C. lanatus var. citroides (Clc). Clc provides a vital source of genetic diversity, as well as resistance to numerous diseases. Unfortunately, both genetic diversity and disease resistance are lacking in Cll due to the narrow genetic base. Despite the importance of Clc to continued watermelon improvement, intra-variety genetic studies are lacking. Here, we present the first Clc genetic linkage map, generated with 2495 single nucleotide polymorphisms developed through genotyping-by-sequencing, and use it to identify quantitative trait loci associated with Fon race 2 resistance. Multiple QTL mapping in a Clc F2:3 population (N = 173) identified one major and four minor QTL. The major QTL explained 43% of the variation in Fon race 2 resistance and was delimited to a 1.2-Mb interval on chromosome 9, a region spanning 44 genes.


Assuntos
Citrullus/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Citrullus/microbiologia , Cruzamentos Genéticos , Fusarium , Ligação Genética , Técnicas de Genotipagem , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único
19.
Plant Dis ; 100(9): 1921-1926, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30682986

RESUMO

Bacterial blight, caused by Pseudomonas cannabina pv. alisalensis, attacks the leaves of most brassica vegetables, including mustard greens (Brassica juncea). 'Carolina Broadleaf,' a new mustard cultivar, is resistant to bacterial blight, whereas 'Florida Broadleaf,' a commonly grown cultivar, is susceptible. Acibenzolar-S-methyl (trade name Actigard) has been used to manage bacterial diseases caused by P. syringae on a variety of crops. The objective of this study was to evaluate host plant resistance and acibenzolar-S-methyl alone and in combination to manage bacterial blight. Three field experiments were done in spring and fall 2011 and fall 2014. In each experiment, acibenzolar-S-methyl was applied twice as a foliar spray, once before and once after plants were inoculated. Severity of bacterial blight was 81% less on nontreated Carolina Broadleaf than on nontreated Florida Broadleaf (P ≤ 0.0003). Acibenzolar-S-methyl applications reduced severity of bacterial blight by 55% compared with the water control treatment on susceptible Florida Broadleaf. Mean weight of diseased leaves, averaged across acibenzolar-S-methyl treatments, was 53% less with Carolina Broadleaf than with Florida Broadleaf (P < 0.0001). However, acibenzolar-S-methyl applied at the recommended rate (14.2 g/ha) significantly injured leaves of Carolina Broadleaf in two experiments and injured leaves of Florida Broadleaf in one experiment. Overall, host plant resistance was more effective than acibenzolar-S-methyl for managing bacterial blight on mustard greens.

20.
Theor Appl Genet ; 127(10): 2105-15, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25104326

RESUMO

KEY MESSAGE: A major quantitative trait locus (QTL) for Fusarium oxysporum Fr. f. sp. niveum race 1 resistance was identified by employing a "selective genotyping" approach together with genotyping-by-sequencing technology to identify QTLs and single nucleotide polymorphisms associated with the resistance among closely related watermelon genotypes. Fusarium wilt is a major disease of watermelon caused by the soil-borne fungus Fusarium oxysporum Schlechtend.:Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon). In this study, a genetic population of 168 F3 families (24 plants in each family) exhibited continuous distribution for Fon race 1 response. Using a "selective genotyping" approach, DNA was isolated from 91 F2 plants whose F3 progeny exhibited the highest resistance (30 F2 plants) versus highest susceptibility (32 F2 plants), or moderate resistance to Fon race 1 (29 F2 plants). Genotyping-by-sequencing (GBS) technology was used on these 91 selected F2 samples to produce 266 single nucleotide polymorphism (SNP) markers, representing the 11 chromosomes of watermelon. A major quantitative trait locus (QTL) associated with resistance to Fon race 1 was identified with a peak logarithm of odds (LOD) of 33.31 and 1-LOD confidence interval from 2.3 to 8.4 cM on chromosome 1 of the watermelon genetic map. This QTL was designated "Fo-1.1" and is positioned in a genomic region where several putative pathogenesis-related or putative disease-resistant gene sequences were identified. Additional independent, but minor QTLs were identified on chromosome 1 (LOD 4.16), chromosome 3 (LOD 4.36), chromosome 4 (LOD 4.52), chromosome 9 (LOD 6.8), and chromosome 10 (LOD 5.03 and 4.26). Following the identification of a major QTL for resistance using the "selective genotyping" approach, all 168 plants of the F 2 population were genotyped using the SNP nearest the peak LOD, confirming the association of this SNP marker with Fon race 1 resistance. The results in this study should be useful for further elucidating the mechanism of resistance to Fusarium wilt and in the development of molecular markers for use in breeding programs of watermelon.


Assuntos
Citrullus/genética , Resistência à Doença/genética , Fusarium , Locos de Características Quantitativas , Mapeamento Cromossômico , Cromossomos de Plantas , Citrullus/microbiologia , Ligação Genética , Genótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...