Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 3(4): 633-643, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30804017

RESUMO

Antibody-drug conjugates (ADCs) are a new class of therapeutics that use antibodies to deliver potent cytotoxic drugs selectively to cancer cells. CD203c, an ecto-nucleotide pyrophosphatase-phosphodiesterase 3, is overexpressed on neoplastic mast cells (MCs) in systemic mastocytosis (SM), thus representing a promising target for antibody-mediated therapy. In this study, we have found that human neoplastic MC lines (ROSAKIT D816V and ROSAKIT D816V-Gluc), which express high levels of CD203c, are highly and specifically sensitive to the antiproliferative effects of an ADC against CD203c (AGS-16C3F). In these cell lines, AGS-16C3F induced cell apoptosis at very low concentrations. To characterize the effects of AGS-16C3F on leukemia progression in vivo, ROSAKIT D816V-Gluc NOD-SCID γ mouse models of advanced SM (AdvSM) were treated with AGS-16C3F or an ADC control for 2 weeks. Whereas AGS-16C3F had no apparent toxicity in xenotransplanted mice, in vivo neoplastic MC burden significantly decreased in both hematopoietic and nonhematopoietic organs. Furthermore, animals treated with AGS-16C3F had prolonged survival compared with the animals treated with control ADC, and AGS-16C3F efficiently prevented disease relapse. In conclusion, these preclinical studies identified CD203c as a novel therapeutic target on neoplastic MCs, and AGS-16C3F as a promising ADC for the treatment of patients with AdvSM.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Imunoconjugados/uso terapêutico , Mastocitose Sistêmica/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Humanos , Mastocitose Sistêmica/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
2.
Haematologica ; 103(11): 1760-1771, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29976735

RESUMO

Mastocytosis is a term used to denote a group of rare diseases characterized by an abnormal accumulation of neoplastic mast cells in various tissues and organs. In most patients with systemic mastocytosis, the neoplastic cells carry activating mutations in KIT Progress in mastocytosis research has long been hindered by the lack of suitable in vitro models, such as permanent human mast cell lines. In fact, only a few human mast cell lines are available to date: HMC-1, LAD1/2, LUVA, ROSA and MCPV-1. The HMC-1 and LAD1/2 cell lines were derived from patients with mast cell leukemia. By contrast, the more recently established LUVA, ROSA and MCPV-1 cell lines were derived from CD34+ cells of non-mastocytosis donors. While some of these cell lines (LAD1/2, LUVA, ROSAKIT WT and MCPV-1) do not harbor KIT mutations, HMC-1 and ROSAKIT D816V cells exhibit activating KIT mutations found in mastocytosis and have thus been used to study disease pathogenesis. In addition, these cell lines are increasingly employed to validate new therapeutic targets and to screen for effects of new targeted drugs. Recently, the ROSAKIT D816V subclone has been successfully used to generate a unique in vivo model of advanced mastocytosis by injection into immunocompromised mice. Such a model may allow in vivo validation of data obtained in vitro with targeted drugs directed against mastocytosis. In this review, we discuss the major characteristics of all available human mast cell lines, with particular emphasis on the use of HMC-1 and ROSAKIT D816V cells in preclinical therapeutic research in mastocytosis.


Assuntos
Linhagem Celular Tumoral , Mastócitos , Mastocitose Sistêmica , Modelos Biológicos , Animais , Linhagem Celular Tumoral/metabolismo , Linhagem Celular Tumoral/patologia , Humanos , Mastócitos/metabolismo , Mastócitos/patologia , Mastocitose Sistêmica/genética , Mastocitose Sistêmica/metabolismo , Mastocitose Sistêmica/patologia
3.
Oncotarget ; 7(50): 82985-83000, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27783996

RESUMO

Systemic mastocytosis are rare neoplasms characterized by accumulation of mast cells in at least one internal organ. The majority of systemic mastocytosis patients carry KIT D816V mutation, which activates constitutively the KIT receptor. Patient with advanced forms of systemic mastocytosis, such as aggressive systemic mastocytosis or mast cell leukemia, are poorly treated to date. Unfortunately, the lack of in vivo models reflecting KIT D816V+ advanced disease hampers pathophysiological studies and preclinical development of new therapies for such patients. Here, we describe a new in vivo model of KIT D816V+ advanced systemic mastocytosis developed by transplantation of the human ROSAKIT D816V-Gluc mast cell line in NOD-SCID IL-2R γ-/- mice, using Gaussia princeps luciferase as a reporter. Intravenous injection of ROSAKIT D816V-Gluc cells led, in 4 weeks, to engraftment in all injected primary recipient mice. Engrafted cells were found at high levels in bone marrow, and at lower levels in spleen, liver and peripheral blood. Disease progression was easily monitored by repeated quantification of Gaussia princeps luciferase activity in peripheral blood. This quantification evidenced a linear relationship between the number of cells injected and the neoplastic mast cell burden in mice. Interestingly, the secondary transplantation of ROSAKIT D816V-Gluc cells increased their engraftment capability. To conclude, this new in vivo model mimics at the best the features of human KIT D816V+ advanced systemic mastocytosis. In addition, it is a unique and convenient tool to study the kinetics of the disease and the potential in vivo activity of new drugs targeting neoplastic mast cells.


Assuntos
Genes Reporter , Luciferases/genética , Mastócitos/transplante , Mastocitose Sistêmica/genética , Mutação , Proteínas Proto-Oncogênicas c-kit/genética , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Predisposição Genética para Doença , Humanos , Subunidade gama Comum de Receptores de Interleucina/deficiência , Subunidade gama Comum de Receptores de Interleucina/genética , Luciferases/biossíntese , Luciferases/sangue , Mastócitos/efeitos dos fármacos , Mastócitos/enzimologia , Mastócitos/patologia , Mastocitose Sistêmica/tratamento farmacológico , Mastocitose Sistêmica/enzimologia , Mastocitose Sistêmica/patologia , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Fenótipo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-kit/metabolismo , Fatores de Tempo , Transfecção
4.
Arch Virol ; 161(1): 141-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26449956

RESUMO

Infection by hepatitis C virus (HCV) is a major public-health problem. Chronic infection often leads to cirrhosis, steatosis, and hepatocellular carcinoma. The life cycle of HCV depends on the host cell machinery and involves intimate interaction between viral and host proteins. However, the role of host proteins in the life cycle of HCV remains poorly understood. Here, we identify the small ubiquitin-related modifier (SUMO1) as a key host factor required for HCV replication. We performed a series of cell biology and biochemistry experiments using the HCV JFH-1 (Japanese fulminate hepatitis 1) genotype 2a strain, which produces infectious particles and recapitulates all the steps of the HCV life cycle. We observed that SUMO1 is upregulated in Huh7.5 infected cells. Reciprocally, SUMO1 was found to regulate the expression of viral core protein. Moreover, knockdown of SUMO1 using specific siRNA influenced the accumulation of lipid droplets and reduced HCV replication as measured by qRT-PCR. Thus, we identify SUMO1 as a key host factor required for HCV replication. To our knowledge, this is the first report showing that SUMO1 regulates lipid droplets in the context of viral infection. Our report provides a meaningful insight into how HCV replicates and interacts with host proteins and is of significant importance for the field of HCV and RNA viruses.


Assuntos
Hepacivirus/fisiologia , Hepatite C/metabolismo , Gotículas Lipídicas/metabolismo , Proteína SUMO-1/deficiência , Replicação Viral , Linhagem Celular , Genótipo , Hepacivirus/genética , Hepatite C/genética , Hepatite C/virologia , Interações Hospedeiro-Patógeno , Humanos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína SUMO-1/genética , Proteínas do Core Viral/genética , Proteínas do Core Viral/metabolismo
5.
Blood ; 124(1): 111-20, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24677542

RESUMO

In systemic mastocytosis (SM), clinical problems arise from factor-independent proliferation of mast cells (MCs) and the increased release of mediators by MCs, but no human cell line model for studying MC activation in the context of SM is available. We have created a stable stem cell factor (SCF) -dependent human MC line, ROSA(KIT WT), expressing a fully functional immunoglobulin E (IgE) receptor. Transfection with KIT D816V converted ROSA(KIT WT) cells into an SCF-independent clone, ROSA(KIT D816V), which produced a mastocytosis-like disease in NSG mice. Although several signaling pathways were activated, ROSA(KIT D816V) did not exhibit an increased, but did exhibit a decreased responsiveness to IgE-dependent stimuli. Moreover, NSG mice bearing ROSA(KIT D816V)-derived tumors did not show mediator-related symptoms, and KIT D816V-positive MCs obtained from patients with SM did not show increased IgE-dependent histamine release or CD63 upregulation. Our data show that KIT D816V is a disease-propagating oncoprotein, but it does not activate MCs to release proinflammatory mediators, which may explain why mediator-related symptoms in SM occur preferentially in the context of a coexisting allergy. ROSA(KIT D816V) may provide a valuable tool for studying the pathogenesis of mastocytosis and should facilitate the development of novel drugs for treating SM patients.


Assuntos
Linhagem Celular , Mastócitos/patologia , Mastocitose Sistêmica/genética , Proteínas Proto-Oncogênicas c-kit/genética , Animais , Western Blotting , Linhagem Celular/citologia , Linhagem Celular/imunologia , Linhagem Celular/metabolismo , Separação Celular , Citometria de Fluxo , Xenoenxertos , Humanos , Imunoglobulina E/imunologia , Imunoglobulina E/metabolismo , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...