Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38611750

RESUMO

Traumatic brain injury (TBI) is associated with an increased risk of developing Parkinson's disease (PD), though the exact mechanisms remain unclear. TBI triggers acute neuroinflammation and catecholamine dysfunction post-injury, both implicated in PD pathophysiology. The long-term impact on these pathways following TBI, however, remains uncertain. In this study, male Sprague-Dawley rats underwent sham surgery or Marmarou's impact acceleration model to induce varying TBI severities: single mild TBI (mTBI), repetitive mild TBI (rmTBI), or moderate-severe TBI (msTBI). At 12 months post-injury, astrocyte reactivity (GFAP) and microglial levels (IBA1) were assessed in the striatum (STR), substantia nigra (SN), and prefrontal cortex (PFC) using immunohistochemistry. Key enzymes and receptors involved in catecholaminergic transmission were measured via Western blot within the same regions. Minimal changes in these markers were observed, regardless of initial injury severity. Following mTBI, elevated protein levels of dopamine D1 receptors (DRD1) were noted in the PFC, while msTBI resulted in increased alpha-2A adrenoceptors (ADRA2A) in the STR and decreased dopamine beta-hydroxylase (DßH) in the SN. Neuroinflammatory changes were subtle, with a reduced number of GFAP+ cells in the SN following msTBI. However, considering the potential for neurodegenerative outcomes to manifest decades after injury, longer post-injury intervals may be necessary to observe PD-relevant alterations within these systems.


Assuntos
Lesões Encefálicas Traumáticas , Doença de Parkinson , Masculino , Ratos , Animais , Ratos Sprague-Dawley , Doenças Neuroinflamatórias , Lesões Encefálicas Traumáticas/complicações , Transdução de Sinais
2.
Nat Commun ; 15(1): 1210, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331934

RESUMO

We implicated the X-chromosome THOC2 gene, which encodes the largest subunit of the highly-conserved TREX (Transcription-Export) complex, in a clinically complex neurodevelopmental disorder with intellectual disability as the core phenotype. To study the molecular pathology of this essential eukaryotic gene, we generated a mouse model based on a hypomorphic Thoc2 exon 37-38 deletion variant of a patient with ID, speech delay, hypotonia, and microcephaly. The Thoc2 exon 37-38 deletion male (Thoc2Δ/Y) mice recapitulate the core phenotypes of THOC2 syndrome including smaller size and weight, and significant deficits in spatial learning, working memory and sensorimotor functions. The Thoc2Δ/Y mouse brain development is significantly impacted by compromised THOC2/TREX function resulting in R-loop accumulation, DNA damage and consequent cell death. Overall, we suggest that perturbed R-loop homeostasis, in stem cells and/or differentiated cells in mice and the patient, and DNA damage-associated functional alterations are at the root of THOC2 syndrome.


Assuntos
Deficiência Intelectual , Fatores de Transcrição , Humanos , Masculino , Camundongos , Animais , Fatores de Transcrição/metabolismo , Estruturas R-Loop , Transporte Ativo do Núcleo Celular , Deficiência Intelectual/genética , Dano ao DNA , Fenótipo , RNA Mensageiro/metabolismo
3.
Front Neurol ; 14: 1180353, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288069

RESUMO

Introduction: Traumatic brain injury (TBI) is now known to be a chronic disease, causing ongoing neurodegeneration and linked to increased risk of neurodegenerative motor diseases, such as Parkinson's disease and amyotrophic lateral sclerosis. While the presentation of motor deficits acutely following traumatic brain injury is well-documented, however, less is known about how these evolve in the long-term post-injury, or how the initial severity of injury affects these outcomes. The purpose of this review, therefore, was to examine objective assessment of chronic motor impairment across the spectrum of TBI in both preclinical and clinical models. Methods: PubMed, Embase, Scopus, and PsycINFO databases were searched with a search strategy containing key search terms for TBI and motor function. Original research articles reporting chronic motor outcomes with a clearly defined TBI severity (mild, repeated mild, moderate, moderate-severe, and severe) in an adult population were included. Results: A total of 97 studies met the inclusion criteria, incorporating 62 preclinical and 35 clinical studies. Motor domains examined included neuroscore, gait, fine-motor, balance, and locomotion for preclinical studies and neuroscore, fine-motor, posture, and gait for clinical studies. There was little consensus among the articles presented, with extensive differences both in assessment methodology of the tests and parameters reported. In general, an effect of severity was seen, with more severe injury leading to persistent motor deficits, although subtle fine motor deficits were also seen clinically following repeated injury. Only six clinical studies investigated motor outcomes beyond 10 years post-injury and two preclinical studies to 18-24 months post-injury, and, as such, the interaction between a previous TBI and aging on motor performance is yet to be comprehensively examined. Conclusion: Further research is required to establish standardized motor assessment procedures to fully characterize chronic motor impairment across the spectrum of TBI with comprehensive outcomes and consistent protocols. Longitudinal studies investigating the same cohort over time are also a key for understanding the interaction between TBI and aging. This is particularly critical, given the risk of neurodegenerative motor disease development following TBI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...