Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Signal ; 109: 110763, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37315752

RESUMO

Reelin and its receptor, ApoER2, play important roles in prenatal brain development and postnatally in synaptic plasticity, learning, and memory. Previous reports suggest that reelin's central fragment binds to ApoER2 and receptor clustering is involved in subsequent intracellular signaling. However, limitations of currently available assays have not established cellular evidence of ApoER2 clustering upon binding of the central reelin fragment. In the present study, we developed a novel, cell-based assay of ApoER2 dimerization using a "split-luciferase" approach. Specifically, cells were co-transfected with one recombinant ApoER2 receptor fused to the N-terminus of luciferase and one ApoER2 receptor fused to the C-terminus of luciferase. Using this assay, we directly observed basal ApoER2 dimerization/clustering in transfected HEK293T cells and, significantly, an increase in ApoER2 clustering in response to that central fragment of reelin. Furthermore, the central fragment of reelin activated intracellular signal transduction of ApoER2, indicated by increased levels of phosphorylation of Dab1, ERK1/2, and Akt in primary cortical neurons. Functionally, we were able to demonstrate that injection of the central fragment of reelin rescued phenotypic deficits observed in the heterozygous reeler mouse. These data are the first to test the hypothesis that the central fragment of reelin contributes to facilitating the reelin intracellular signaling pathway through receptor clustering.


Assuntos
Proteínas da Matriz Extracelular , Serina Endopeptidases , Camundongos , Animais , Humanos , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Células HEK293 , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais/fisiologia , Modelos Animais de Doenças , Luciferases/metabolismo , Cognição , Receptores de LDL/metabolismo
2.
Eur J Neurosci ; 57(10): 1657-1670, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36945758

RESUMO

Reelin, a large extracellular glycoprotein, plays a critical role in prenatal brain development and postnatally in synaptic plasticity, learning and memory. Dysregulation of Reelin signalling has been implicated in several neuropsychiatric disorders including schizophrenia, autism, depression and Alzheimer's disease. Previous studies have demonstrated that Reelin's central fragment, R3456, binds to ApoER2, inducing ApoER2 clustering and subsequent intracellular signalling. We previously reported the development of a novel luciferase complementation assay, which we used to demonstrate that R3456 can lead to ApoER2 receptor dimerization. Using this same assay, we explored various smaller fragments and combinations from R3456, and we identified a construct of repeats 3 and 6 (R36), which could still elicit equivalent receptor dimerization. The purpose of this study was to test R36 for biological effects in vitro and in vivo. We show that R36 was capable of initiating intracellular signalling in primary neuronal cultures. In addition, we demonstrate that a single intracerebroventricular injection of R36 protein into a model of Reelin deficiency, the heterozygous reeler mice, can significantly improve cognition. These data support a role for the new construct R36 to enhance the Reelin pathway, and the future possibility of exploring gene therapy approaches with R36 in diseases characterized by reduced levels of Reelin.


Assuntos
Moléculas de Adesão Celular Neuronais , Proteínas da Matriz Extracelular , Camundongos , Animais , Proteínas da Matriz Extracelular/genética , Camundongos Mutantes Neurológicos , Moléculas de Adesão Celular Neuronais/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Transporte
3.
Exp Neurobiol ; 32(1): 42-55, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36919335

RESUMO

Amyloid precursor protein (APP) plays an important role in the pathogenesis of Alzheimer's disease (AD), but the normal function of APP at synapses is poorly understood. We and others have found that APP interacts with Reelin and that each protein is individually important for dendritic spine formation, which is associated with learning and memory, in vitro. However, whether Reelin acts through APP to modulate dendritic spine formation or synaptic function remains unknown. In the present study, we found that Reelin treatment significantly increased dendritic spine density and PSD-95 puncta number in primary hippocampal neurons. An examination of the molecular mechanisms by which Reelin regulates dendritic spinogenesis revealed that Reelin enhanced hippocampal dendritic spine formation in a Ras/ERK/CREB signaling-dependent manner. Interestingly, Reelin did not increase dendritic spine number in primary hippocampal neurons when APP expression was reduced or in vivo in APP knockout (KO) mice. Taken together, our data are the first to demonstrate that Reelin acts cooperatively with APP to modulate dendritic spine formation and suggest that normal APP function is critical for Reelin-mediated dendritic spinogenesis at synapses.

4.
Clin EEG Neurosci ; 54(2): 203-212, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33203220

RESUMO

The goal of these studies was to use quantitative (q)EEG techniques on data from children with Angelman syndrome (AS) using spectral power analysis, and to evaluate this as a potential biomarker and quantitative method to evaluate therapeutics. Although characteristic patterns are evident in visual inspection, using qEEG techniques has the potential to provide quantitative evidence of treatment efficacy. We first assessed spectral power from baseline EEG recordings collected from children with AS compared to age-matched neurotypical controls, which corroborated the previously reported finding of increased total power driven by elevated delta power in children with AS. We then retrospectively analyzed data collected during a clinical trial evaluating the safety and tolerability of minocycline (3 mg/kg/d) to compare pretreatment recordings from children with AS (4-12 years of age) to EEG activity at the end of treatment and following washout for EEG spectral power and epileptiform events. At baseline and during minocycline treatment, the AS subjects demonstrated increased delta power; however, following washout from minocycline treatment the AS subjects had significantly reduced EEG spectral power and epileptiform activity. Our findings support the use of qEEG analysis in evaluating AS and suggest that this technique may be useful to evaluate therapeutic efficacy in AS. Normalizing EEG power in AS therefore may become an important metric in screening therapeutics to gauge overall efficacy. As therapeutics transition from preclinical to clinical studies, it is vital to establish outcome measures that can quantitatively evaluate putative treatments for AS and neurological disorders with distinctive EEG patterns.


Assuntos
Síndrome de Angelman , Criança , Humanos , Síndrome de Angelman/diagnóstico , Síndrome de Angelman/tratamento farmacológico , Eletroencefalografia , Minociclina/uso terapêutico , Estudos Retrospectivos , Resultado do Tratamento
5.
Front Cell Neurosci ; 17: 1321632, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38283751

RESUMO

The etiology of schizophrenia (SCZ) is multifactorial, and depending on a host of genetic and environmental factors. Two putative SCZ susceptibility genes, Disrupted-in-Schizophrenia-1 (DISC1) and reelin (RELN), interact at a molecular level, suggesting that combined disruption of both may lead to an intensified SCZ phenotype. To examine this gene-gene interaction, we produced a double mutant mouse line. Mice with heterozygous RELN haploinsufficiency were crossed with mice expressing dominant-negative c-terminal truncated human DISC1 to produce offspring with both mutations (HRM/DISC1 mice). We used an array of behavioral tests to generate a behavioral phenotype for these mice, then examined the prefrontal cortex and hippocampus using western blotting and immunohistochemistry to probe for SCZ-relevant molecular and cellular alterations. Compared to wild-type controls, HRM/DISC1 mice demonstrated impaired pre-pulse inhibition, altered cognition, and decreased activity. Diazepam failed to rescue anxiety-like behaviors, paradoxically increasing activity in HRM/DISC1 mice. At a cellular level, we found increased α1-subunit containing GABA receptors in the prefrontal cortex, and a reduction in fast-spiking parvalbumin positive neurons. Maturation of adult-born neurons in the hippocampus was also altered in HRM/DISC1 mice. While there was no difference in the total number proliferating cells, more of these cells were in immature stages of development. Homozygous DISC1 mutation combined with RELN haploinsufficiency produces a complex phenotype with neuropsychiatric characteristics relevant to SCZ and related disorders, expanding our understanding of how multiple genetic susceptibility factors might interact to influence the variable presentation of these disorders.

6.
Exp Neurol ; 357: 114170, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35863501

RESUMO

Fragile X Syndrome (FXS) is the most common form of inherited intellectual disability and is characterized by autistic behaviors, childhood seizures, and deficits in learning and memory. FXS has a loss of function of the FMR1 gene that leads to a lack of Fragile X Mental Retardation Protein (FMRP) expression. FMRP is critical for synaptic plasticity, spatial learning, and memory. Reelin is a large extracellular glycoprotein essential for synaptic plasticity and numerous neurodevelopmental processes. Reduction in Reelin signaling is implicated as a contributing factor in disease etiology in several neurological disorders, including schizophrenia, and autism. However, the role of Reelin in FXS is poorly understood. We demonstrate a reduction in Reelin in Fmr1 knock-out (KO) mice, suggesting that a loss of Reelin activity may contribute to FXS. We demonstrate here that Reelin signaling enhancement via a single intracerebroventricular injection of the Reelin central fragment into Fmr1 KO mice can profoundly rescue cognitive deficits in hidden platform water maze and fear conditioning, as well as hyperactivity during the open field. Improvements in behavior were associated with rescued levels of post synaptic marker in Fmr1 KO mice when compared to controls. These data suggest that increasing Reelin signaling in FXS could offer a novel therapeutic for improving cognition in FXS.


Assuntos
Síndrome do Cromossomo X Frágil , Animais , Cognição , Suplementos Nutricionais , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/complicações , Síndrome do Cromossomo X Frágil/genética , Síndrome do Cromossomo X Frágil/metabolismo , Camundongos , Camundongos Knockout
7.
Mol Cell Neurosci ; 120: 103724, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367589

RESUMO

We recently generated a novel Angelman syndrome (AS) rat model with a complete Ube3a gene deletion, that recapitulates the loss of UBE3A protein and shows cognitive and EEG deficits. We also recently published the identification of extracellular UBE3A protein within the brain using microdialysis. Here we explored the effects of supplementation of exogenous UBE3A protein to hippocampal slices and intrahippocampal injection of AS rats. We report that the AS rat model demonstrates deficits in hippocampal long-term potentiation (LTP) which can be recovered with the application of exogenous UBE3A protein. Furthermore, injection of recombinant UBE3A protein into the hippocampus of the AS rat can rescue the associative learning and memory deficits seen in the fear conditioning task. These data suggest that extracellular UBE3A protein may play a role in synaptic function, LTP induction and hippocampal-dependent memory formation.


Assuntos
Síndrome de Angelman , Síndrome de Angelman/tratamento farmacológico , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Animais , Suplementos Nutricionais , Modelos Animais de Doenças , Hipocampo/metabolismo , Potenciação de Longa Duração , Ratos , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
8.
Geroscience ; 44(1): 173-194, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34410588

RESUMO

C-terminal cleaved tau at D421 (∆D421-tau) accumulates in the brains of Alzheimer's disease (AD) patients. However, it is unclear how tau truncation, an understudied tau post-translational modification, contributes to AD pathology and progression. Utilizing an adeno-associated virus (AAV) gene delivery-based approach, we overexpressed full-length tau (FL-tau) and ∆D421-tau in 4- and 12-month-old mice for 4 months to study the neuropathological impact of accumulation in young adult (8-month) and middle-aged (16-month) mice. Overall, we show that independent of the tau species, age was an important factor facilitating tau phosphorylation, oligomer formation, and deposition into silver-positive tangles. However, mice overexpressing ∆D421-tau exhibited a distinct phosphorylation profile to those overexpressing FL-tau and increased tau oligomerization in the middle-age group. Importantly, overexpression of ∆D421-tau, but not FL-tau in middle-aged mice, resulted in pronounced cognitive impairments and hippocampal long-term potentiation deficits. While both FL-tau and ∆D421-tau induced neuronal loss in mice with age, ∆D421-tau led to significant neuronal loss in the CA3 area of the hippocampus and medial entorhinal cortex compared to FL-tau. Based on our data, we conclude that age increases the susceptibility to neuronal degeneration associated with ΔD421-tau accumulation. Our findings suggest that ΔD421-tau accumulation contributes to synaptic plasticity and cognitive deficits, thus representing a potential target for tau-associated pathologies.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/genética , Animais , Cognição , Disfunção Cognitiva/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Plasticidade Neuronal
9.
eNeuro ; 8(2)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33531368

RESUMO

Angelman syndrome (AS) is a neurodevelopmental disorder with unique behavioral phenotypes, seizures, and distinctive electroencephalographic (EEG) patterns. Recent studies identified motor, social communication, and learning and memory deficits in a CRISPR engineered rat model with a complete maternal deletion of the Ube3a gene. It is unknown whether this model recapitulates other aspects of the clinical disorder. We report here the effect of Ube3a maternal deletion in the rat on epileptiform activity, seizure threshold, and quantitative EEG. Using video-synchronized EEG (vEEG) monitoring, we assessed spectral power and epileptiform activity early postnatally through adulthood. While EEG power was similar to wild-type (WT) at 1.5 weeks postnatally, at all other ages analyzed, our findings were similar to the AS phenotype in mice and humans with significantly increased δ power. Analysis of epileptiform activity in juvenile and adult rats showed increased time spent in epileptiform activity in AS compared with WT rats. We evaluated seizure threshold using pentylenetetrazol (PTZ), audiogenic stimulus, and hyperthermia to provoke febrile seizures (FSs). Behavioral seizure scoring following PTZ induction revealed no difference in seizure threshold in AS rats, however behavioral recovery from the PTZ-induced seizure was longer in the adult group with significantly increased hippocampal epileptiform activity during this phase. When exposed to hyperthermia, AS rat pups showed a significantly lower temperature threshold to first seizure than WT. Our findings highlight an age-dependence for the EEG and epileptiform phenotypes in a preclinical model of AS, and support the use of quantitative EEG and increased δ power as a potential biomarker of AS.


Assuntos
Síndrome de Angelman , Síndrome de Angelman/genética , Animais , Eletroencefalografia , Deleção de Genes , Camundongos , Fenótipo , Ratos , Convulsões/genética , Ubiquitina-Proteína Ligases/genética
10.
Autism Res ; 14(4): 645-655, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33474832

RESUMO

Disruptions to the maternally inherited allele UBE3A, encoding for an E3 ubiquitin ligase, leads to the manifestation of Angelman Syndrome (AS). While this disorder is rare, the symptoms are severe and lifelong including but not limited to: intractable seizures, abnormal EEG's, ataxic gait, lack of speech, and most notably an abnormally happy demeanor with easily provoked laughter. Currently, little is known about the neurophysiological underpinnings of UBE3A leading to such globally severe phenotypes. Utilizing the newest AS rat model, comprised of a full UBE3A deletion, we aimed to elucidate novel mechanistic actions and potential therapeutic targets. This report demonstrates for the first time that catalytically active UBE3A protein is detectable within cerebrospinal fluid (CSF) of wild type rats but distinctly absent in AS rat CSF. Microdialysis within the rat hippocampus also showed that UBE3A protein is located in the interstitial fluid of wild type rat brains but absent in AS animals. This protein maintains catalytic activity and appears to be regulated in a dynamic activity-dependent manner. LAY SUMMARY: Angelman syndrome (AS) is a rare genetic disorder caused by the loss of the UBE3A gene within the central nervous system. Although we have identified the gene responsible for AS, we still have a long way to go to fully understand its function in vivo. Here we report that UBE3A is present within normal cerebrospinal fluid (CSF) but distinctly absent in AS CSF. Furthermore, we demonstrate that UBE3A is secreted and that this may occur in a dynamic activity-dependent fashion. Extracellular UBE3A maintained its ubiquitinating activity, thus suggesting that UBE3A may have a novel role outside of neurons. Autism Res 2021, 14: 645-655. © 2021 International Society for Autism Research and Wiley Periodicals LLC.


Assuntos
Síndrome de Angelman , Transtorno do Espectro Autista , Síndrome de Angelman/genética , Animais , Espaço Extracelular , Hipocampo , Plasticidade Neuronal , Ratos , Ubiquitina-Proteína Ligases/genética
11.
J Neuroinflammation ; 17(1): 157, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32410624

RESUMO

BACKGROUND: Fractalkine (CX3CL1; FKN) is a chemokine expressed by neurons that mediates communication between neurons and microglia. By regulating microglial activity, CX3CL1 can mitigate the damaging effects of chronic microglial inflammation within the brain, a state that plays a major role in aging and neurodegeneration. CX3CL1 is present in two forms, a full-length membrane-bound form and a soluble cleaved form (sFKN), generated by a disintegrin and metalloproteinase (ADAM) 10 or 17. Levels of sFKN decrease with aging, which could lead to enhanced inflammation, deficits in synaptic remodeling, and subsequent declines in cognition. Recently, the idea that these two forms of CX3CL1 may display differential activities within the CNS has garnered increased attention, but remains unresolved. METHODS: Here, we assessed the consequences of CX3CL1 knockout (CX3CL1-/-) on cognitive behavior as well as the functional rescue with the two different forms of CX3CL1 in mice. CX3CL1-/- mice were treated with adeno-associated virus (AAV) expressing either green fluorescent protein (GFP), sFKN, or an obligate membrane-bound form of CX3CL1 (mFKN) and then subjected to behavioral testing to assess cognition and motor function. Following behavioral analysis, brains were collected and analyzed for markers of neurogenesis, or prepared for electrophysiology to measure long-term potentiation (LTP) in hippocampal slices. RESULTS: CX3CL1-/- mice showed significant deficits in cognitive tasks for long-term memory and spatial learning and memory in addition to demonstrating enhanced basal motor performance. These alterations correlated with deficits in both hippocampal neurogenesis and LTP. Treatment of CX3CL1-/- mice with AAV-sFKN partially corrected changes in both cognitive and motor function and restored neurogenesis and LTP to levels similar to wild-type animals. Treatment with AAV-mFKN partially restored spatial learning and memory in CX3CL1-/- mice, but did not rescue long-term memory, or neurogenesis. CONCLUSIONS: These results are the first to demonstrate that CX3CL1 knockout causes significant cognitive deficits that can be rescued by treatment with sFKN and only partially rescued with mFKN. This suggests that treatments that restore signaling of soluble forms of CX3CL1 may be a viable therapeutic option for aging and disease.


Assuntos
Encéfalo/metabolismo , Quimiocina CX3CL1/metabolismo , Disfunção Cognitiva/metabolismo , Animais , Camundongos , Camundongos Knockout , Neurogênese/fisiologia , Isoformas de Proteínas
12.
Autism Res ; 13(3): 397-409, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31961493

RESUMO

Angelman syndrome (AS) is a rare genetic disorder characterized by severe intellectual disability, seizures, lack of speech, and ataxia. The gene responsible for AS was identified as Ube3a and it encodes for E6AP, an E3 ubiquitin ligase. Currently, there is very little known about E6AP's mechanism of action in vivo or how the lack of this protein in neurons may contribute to the AS phenotype. Elucidating the mechanistic action of E6AP would enhance our understanding of AS and drive current research into new avenues that could lead to novel therapeutic approaches that target E6AP's various functions. To facilitate the study of AS, we have generated a novel rat model in which we deleted the rat Ube3a gene using CRISPR. The AS rat phenotypically mirrors human AS with loss of Ube3a expression in the brain and deficits in motor coordination as well as learning and memory. This model offers a new avenue for the study of AS. Autism Res 2020, 13: 397-409. © 2020 International Society for Autism Research,Wiley Periodicals, Inc. LAY SUMMARY: Angelman syndrome (AS) is a rare genetic disorder characterized by severe intellectual disability, seizures, difficulty speaking, and ataxia. The gene responsible for AS was identified as UBE3A, yet very little is known about its function in vivo or how the lack of this protein in neurons may contribute to the AS phenotype. To facilitate the study of AS, we have generated a novel rat model in which we deleted the rat Ube3a gene using CRISPR. The AS rat mirrors human AS with loss of Ube3a expression in the brain and deficits in motor coordination as well as learning and memory. This model offers a new avenue for the study of AS.


Assuntos
Síndrome de Angelman/genética , Síndrome de Angelman/fisiopatologia , Deleção de Genes , Ubiquitina-Proteína Ligases/genética , Animais , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Humanos , Memória , Fenótipo , Ratos , Ratos Sprague-Dawley
13.
Trials ; 21(1): 60, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31918761

RESUMO

BACKGROUND: Ketogenic and low-glycemic-index diets are effective in treating drug-resistant seizures in children with Angelman syndrome. Cognition, mobility, sleep, and gastrointestinal health are intrinsically linked to seizure activity and overall quality of life. Ketogenic and low-glycemic diets restrict carbohydrate consumption and stabilize blood glucose levels. The ketogenic diet induces ketosis, a metabolic state where ketone bodies are preferentially used for fuel. The use of exogenous ketones in promoting ketosis in Angelman syndrome has not been previously studied. The study formulation evaluated herein contains the exogenous ketone beta-hydroxybutyrate to rapidly shift the body towards ketosis, resulting in enhanced metabolic efficiency. METHODS/DESIGN: This is a 16-week, randomized, double-blind, placebo-controlled, crossover study to assess the safety and tolerability of a nutritional formula containing exogenous ketones. It also examines the potential for exogenous ketones to improve the patient's nutritional status which can impact the physiologic, symptomatic, and health outcome liabilities of living with Angelman syndrome. DISCUSSION: This manuscript outlines the rationale for a study designed to be the first to provide data on nutritional approaches for patients with Angelman syndrome using exogenous ketones. TRIAL REGISTRATION: ClinicalTrials.gov, ID: NCT03644693. Registered on 23 August 2018. Last updated on 23 August 2018.


Assuntos
Síndrome de Angelman/dietoterapia , Dieta Cetogênica , Cetonas/administração & dosagem , Ensaios Clínicos Controlados Aleatórios como Assunto , Ácido 3-Hidroxibutírico/administração & dosagem , Síndrome de Angelman/metabolismo , Estudos Cross-Over , Dieta com Restrição de Carboidratos , Método Duplo-Cego , Índice Glicêmico , Humanos , Estado Nutricional
14.
Mol Cell Neurosci ; 102: 103418, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31705957

RESUMO

AIMS: The current study utilizes the adeno-associated viral gene transfer system in the CAMKIIα-tTA mouse model to overexpress human wild type TDP-43 (wtTDP-43) and α-synuclein (α-Syn) proteins. The co-existence of these proteins is evident in the pathology of neurodegenerative disorders such as frontotemporal lobar degeneration (FTLD), Parkinson disease (PD), and dementia with Lewy bodies (DLB). METHODS: The novel bicistronic recombinant adeno-associated virus (rAAV) serotype 9 drives wtTDP-43 and α-Syn expression in the hippocampus via "TetO" CMV promoter. Behavior, electrophysiology, and biochemical and histological assays were used to validate neuropathology. RESULTS: We report that overexpression of wtTDP-43 but not α-Syn contributes to hippocampal CA2-specific pyramidal neuronal loss and overall hippocampal atrophy. Further, we report a reduction of hippocampal long-term potentiation and decline in learning and memory performance of wtTDP-43 expressing mice. Elevated wtTDP-43 levels induced selective degeneration of Purkinje cell protein 4 (PCP-4) positive neurons while both wtTDP-43 and α-Syn expression reduced subsets of the glutamate receptor expression in the hippocampus. CONCLUSIONS: Overall, our findings suggest the significant vulnerability of hippocampal neurons toward elevated wtTDP-43 levels possibly via PCP-4 and GluR-dependent calcium signaling pathways. Further, we report that wtTDP-43 expression induced selective CA2 subfield degeneration, contributing to the deterioration of the hippocampal-dependent cognitive phenotype.


Assuntos
Região CA2 Hipocampal/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Potenciação de Longa Duração , Memória , Animais , Região CA2 Hipocampal/fisiologia , Proteínas de Ligação a DNA/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Aprendizagem em Labirinto , Camundongos , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Células Piramidais/metabolismo , Células Piramidais/fisiologia , Receptores de Glutamato/genética , Receptores de Glutamato/metabolismo , alfa-Sinucleína/metabolismo
15.
Alzheimers Res Ther ; 11(1): 58, 2019 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-31253191

RESUMO

BACKGROUND: Tau stabilizes microtubules; however, in Alzheimer's disease (AD) and tauopathies, tau becomes hyperphosphorylated, aggregates, and results in neuronal death. Our group recently uncovered a unique interaction between polyamine metabolism and tau fate. Polyamines exert an array of physiological effects that support neuronal function and cognitive processing. Specific stimuli can elicit a polyamine stress response (PSR), resulting in altered central polyamine homeostasis. Evidence suggests that elevations in polyamines following a short-term stressor are beneficial; however, persistent stress and subsequent PSR activation may lead to maladaptive polyamine dysregulation, which is observed in AD, and may contribute to neuropathology and disease progression. METHODS: Male and female mice harboring tau P301L mutation (rTg4510) were examined for a tau-induced central polyamine stress response (tau-PSR). The direct effect of tau-PSR byproducts on tau fibrillization and oligomerization were measured using a thioflavin T assay and a N2a split superfolder GFP-Tau (N2a-ssGT) cell line, respectively. To therapeutically target the tau-PSR, we bilaterally injected caspase 3-cleaved tau truncated at aspartate 421 (AAV9 Tau ΔD421) into the hippocampus and cortex of spermidine/spermine-N1-acetyltransferase (SSAT), a key regulator of the tau-PSR, knock out (SSAT-/-), and wild type littermates, and the effects on tau neuropathology, polyamine dysregulation, and behavior were measured. Lastly, cellular models were employed to further examine how SSAT repression impacted tau biology. RESULTS: Tau induced a unique tau-PSR signature in rTg4510 mice, notably in the accumulation of acetylated spermidine. In vitro, higher-order polyamines prevented tau fibrillization but acetylated spermidine failed to mimic this effect and even promoted fibrillization and oligomerization. AAV9 Tau ΔD421 also elicited a unique tau-PSR in vivo, and targeted disruption of SSAT prevented the accumulation of acetylated polyamines and impacted several tau phospho-epitopes. Interestingly, SSAT knockout mice presented with altered behavior in the rotarod task, the elevated plus maze, and marble burying task, thus highlighting the impact of polyamine homeostasis within the brain. CONCLUSION: These data represent a novel paradigm linking tau pathology and polyamine dysfunction and that targeting specific arms within the polyamine pathway may serve as new targets to mitigate certain components of the tau phenotype.


Assuntos
Acetiltransferases/metabolismo , Poliaminas/metabolismo , Estresse Fisiológico , Tauopatias/enzimologia , Acetiltransferases/genética , Animais , Feminino , Hipocampo/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Agregação Patológica de Proteínas/metabolismo , Proteínas tau/metabolismo
16.
eNeuro ; 6(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-30963102

RESUMO

Increased expression of the FK506-binding protein 5 (FKBP5) gene has been associated with a number of diseases, but most prominently in connection to psychiatric illnesses. Many of these psychiatric disorders present with dementia and other cognitive deficits, but a direct connection between these issues and alterations in FKBP5 remains unclear. We generated a novel transgenic mouse to selectively overexpress FKBP5, which encodes the FKBP51 protein, in the corticolimbic system, which had no overt effects on gross body weight, motor ability, or general anxiety. Instead, we found that overexpression of FKBP51 impaired long-term depression (LTD) as well as spatial reversal learning and memory, suggesting a role in glutamate receptor regulation. Indeed, FKBP51 altered the association of heat-shock protein 90 (Hsp90) with AMPA receptors, which was accompanied by an accelerated rate of AMPA recycling. In this way, the chaperone system is critical in triage decisions for AMPA receptor trafficking. Imbalance in the chaperone system may manifest in impairments in both inhibitory learning and cognitive function. These findings uncover an unexpected and essential mechanism for learning and memory that is controlled by the psychiatric risk factor FKBP5.


Assuntos
Cognição/fisiologia , Disfunção Cognitiva/metabolismo , Receptores de AMPA/metabolismo , Aprendizagem Espacial/fisiologia , Proteínas de Ligação a Tacrolimo/biossíntese , Animais , Disfunção Cognitiva/patologia , Feminino , Humanos , Depressão Sináptica de Longo Prazo/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Transporte Proteico/fisiologia
17.
Geroscience ; 41(1): 77-87, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30739297

RESUMO

The incidence of neurodegenerative disorders and cognitive impairment is increasing. Rising prevalence of age-related medical conditions is associated with a dramatic economic burden; therefore, developing strategies to manage these health concerns is of great public health interest. Nutritionally based interventions have shown promise in treatment of these age-associated conditions. Astaxanthin is a carotenoid with reputed neuroprotective properties in the context of disease and injury, while emerging evidence suggests that astaxanthin may also have additional biological activities relating to neurogenesis and synaptic plasticity. Here, we investigate the potential for astaxanthin to modulate cognitive function and neural plasticity in young and aged mice. We show that feeding astaxanthin to aged mice for 1 month improves performance on several hippocampal-dependent cognitive tasks and increases long-term potentiation. However, we did not observe an alteration in neurogenesis, nor did we observe a change in microglial-associated IBA1 immunostaining. This demonstrates the potential for astaxanthin to modulate neural plasticity and cognitive function in aging.


Assuntos
Envelhecimento/efeitos dos fármacos , Cognição/efeitos dos fármacos , Suplementos Nutricionais , Plasticidade Neuronal/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Envelhecimento/patologia , Animais , Comportamento Animal/efeitos dos fármacos , Disfunção Cognitiva/dietoterapia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Inflamação/dietoterapia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/fisiologia , Doenças Neurodegenerativas/dietoterapia , Neurogênese/efeitos dos fármacos , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Xantofilas/administração & dosagem , Xantofilas/farmacologia , Xantofilas/uso terapêutico
18.
J Appl Res Intellect Disabil ; 31(6): 1219-1224, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29737626

RESUMO

BACKGROUND: Angelman syndrome (AS) leads to clinical manifestations that include intellectual impairments, developmental delay and poor motor function. Initiatives to develop therapeutics implie an urgent need to identify methods that accurately measure the motor abilities. METHODS: Six children with AS (6 to 9 years old) walked on an instrumented walkway to get spatiotemporal parameters (STPs) and center of pressure (CoP). These outcomes were compared to typically developing children (TD): 44 TD 6 to 9 years old and 20 TD 4 to 5 years old. RESULTS: Analysis revealed differences in all STPs and gait variability index when compared to TD individuals. When AS participants were compared to younger TD individuals, except step length, STPs were different. Analysis of the CoP pathway revealed a less consistent and efficient pathway in AS. CONCLUSIONS: We could delineate the functional difference between children with AS and TD children. The variability of STP and the CoP were the most valuable components in gait to be considered in AS.


Assuntos
Síndrome de Angelman/fisiopatologia , Marcha/fisiologia , Equilíbrio Postural/fisiologia , Fenômenos Biomecânicos , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Projetos Piloto
19.
Mol Neurobiol ; 55(9): 7187-7200, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29388081

RESUMO

Angelman syndrome (AS) is a complex genetic disorder that affects the nervous system. AS affects an estimated 1 in 12,000 to 20,000 individuals. Characteristic features of AS includes developmental delay or intellectual disability, severe speech impairment, seizures, small head size (microcephaly), and problems with movement and balance (ataxia). AS individuals usually have microdeletion of the maternal copy of 15q11.2-15q13 region of chromosome 15. The E6-associated protein (E6AP, an E3 ubiquitin protein ligase enzyme) is encoded by the gene UBE3A, which is located in this region, and it has been shown that deregulation of E6AP gives rise to AS and neuropathology of autism spectrum disorders (ASDs) (e.g., autism and Rett syndromes). We have shown that E6AP also acts as a coactivator of the estrogen receptor (ER). ER is a ligand-induced transcription factor that exerts potent and wide-ranging effects on the developing brain. Furthermore, the expression pattern of ER in the brain overlaps with that of E6AP. Up till now, all the published studies have examined the role of the ubiquitin-protein ligase activity of E6AP in the development of AS, and it is not known what role the newly discovered coactivation functions of E6AP and ER plays in the pathology of AS. Here, we demonstrate that E6AP and ER co-immunoprecipitate and are in the same protein complex in neuronal cells (Neuro2a). In addition, both colocalize in nuclear and cytoplasmic compartments of the mouse hippocampal neurons and Neuro2a cells. Moreover, we identified a novel E6AP and ER direct transcriptional regulation of a gene Cyp26b1 known to be involved in learning and memory processes. This transcriptional regulation involves recruitment of E6AP and ER to a newly discovered functional estrogen response element (ERE) located at the Cyp26b1 gene promoter and is associated with transcription permissive epigenetic events leading to increase of active transcription of the gene in neurons upon estrogen treatment. This novel transcriptional regulation was also validated in the AS mouse model where E6AP expression is abrogated in the mouse brain. In fact, Cyp26b1 expression is decreased by 31% in AS mice versus age-matched control (Ctrl) mice hippocampi. Also, retinoic acid transcriptional signaling was shown to be amplified as evidenced by specific increased Rarß and decreased Erbb4 mRNA expression in AS mice versus Ctrl mice hippocampi. These transcript level changes were also supported by the same trend of changes at the protein level. Collectively, our data present a proof of principle that the transcriptional coactivation function of E6AP may have a crucial role in the pathobiology of AS. This function, yet to be thoroughly investigated, reveals the possibility of harnessing the antagonistic estrogen-retinoic acid transcriptional signaling crosstalk and potentially other unknown effectors for the investigation of important possible targets as putative novel treatment modalities and venues for reversing neurological manifestations in AS and related syndromes like ASDs.


Assuntos
Síndrome de Angelman/genética , Estrogênios/metabolismo , Neurônios/metabolismo , Transcrição Gênica , Tretinoína/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Síndrome de Angelman/patologia , Animais , Sequência de Bases , Núcleo Celular/metabolismo , Epigênese Genética/efeitos dos fármacos , Células HeLa , Humanos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Neurônios/patologia , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Estrogênio/metabolismo , Elementos de Resposta/genética , Ácido Retinoico 4 Hidroxilase/genética , Ácido Retinoico 4 Hidroxilase/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
20.
Am J Med Genet A ; 176(5): 1099-1107, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28944563

RESUMO

Treatment for Angelman syndrome (AS) is currently limited to symptomatic interventions. A mouse model of AS has reduced calcium/calmodulin-dependent kinase II activity due to excessive phosphorylation of specific threonine residues, leading to diminished long-term potentiation. In a rat model of Parkinson disease, levodopa reduced phosphorylation of various proteins, including calcium/calmodulin-dependent kinase II. Further studies demonstrated that AS mice treated with levodopa performed better on rotarod testing than untreated AS mice. We conducted a multi-center double-blind randomized placebo-controlled 1-year trial of levodopa / carbidopa with either 10 or 15 mg/kg/day of levodopa in children with AS. The outcome of this intervention was assessed using either the Bayley Scales of Infant Development or the Mullen Scales of Early Learning, as well as the Vineland Adaptive Behavior Scales, and the Aberrant Behavior Checklist. Of the 78 participants enrolled, 67 participants received study medication (33 on levodopa, 34 on placebo), and 55 participants (29 on levodopa, 26 on placebo) completed the 1-year study. There were no clinically or statistically significant changes in any of the outcome measures over a 1-year period comparing the levodopa and placebo groups. The number of adverse events reported, including the more serious adverse events, was similar in both groups, but none were related to treatment with levodopa. Our data demonstrate that levodopa is well-tolerated by children with AS. However, in the doses used in this study, it failed to improve their neurodevelopment or behavioral outcome.


Assuntos
Síndrome de Angelman/tratamento farmacológico , Levodopa/uso terapêutico , Síndrome de Angelman/diagnóstico , Síndrome de Angelman/fisiopatologia , Síndrome de Angelman/psicologia , Animais , Biomarcadores , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Modelos Animais de Doenças , Humanos , Levodopa/administração & dosagem , Potenciação de Longa Duração , Camundongos , Testes Neuropsicológicos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...