Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 10(39): 32998-33009, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30184426

RESUMO

Shape memory polymers (SMPs) have been found to be promising biomaterials for a variety of medical applications; however, the clinical translation of such technology is dependent on tailorable properties such as gravimetric changes in degradation environments. For SMPs synthesized from amino-alcohols, oxidation resulting in rapid mass loss may be problematic in terms of loss of material functionality as well as toxicity and cytocompatibility concerns. Control of gravimetric changes was achieved through the incorporation of small molecule antioxidants, either directly into the polymer matrix or included in microparticles to form a SMP composite material. With direct incorporation of small molecule phenolic antioxidant 2,2'-methylenebis(6- tert-butyl)-methylphenol (Methyl), SMPs displayed reduce strain recovery by more than 50% (Methyl) and increase elastic modulus from approximately 1.4 to 2.3 MPa, at the expense of the strain to failure being reduced from 45% to 32%. Importantly, such changes could not ensure retention of the antioxidants and therefore did not increase oxidative stability beyond 15 days in accelerated oxidative conditions (equivalent to approximately 800 days in porcine aneurysms) in all cases except for the inclusion of a hindered amine that capped network growth, which also resulted in shape memory reduction (only 80% recoverable strain achieved). However, the inclusion of antioxidants in microparticles was found to produce materials with similar thermomechanical ( Tg migration below 1.0 °C) and shape recovery of 100%, while increasing oxidative resistance compared to controls (oxidation onset was delayed by 3 days and material lifespan increased to approximately 20-22 days in accelerated oxidative solution or beyond 1000 days in the porcine aneurysm). The microparticle composite SMPs also act as a platform for environmental sensing, such as pH-dependent fluorescence shifts and payload release, as demonstrated by fluorescent dye studies using phloxine B and nile blue chloride and the release of antioxidants over a 3 week period. The use of polyurethane-urea microparticles in porous SMPs is demonstrated to increase biostability of the materials, by approximately 25%, and ultimately extend their lifespan for use in aneurysm occlusion as determined through calculated in vivo degradation rates corresponding to a porcine aneurysm environment.


Assuntos
Antioxidantes/química , Polímeros/química , Poliuretanos/química , Cromatografia Gasosa-Espectrometria de Massas , Microscopia Confocal , Microscopia Eletrônica de Varredura , Oxirredução , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Acta Biomater ; 54: 45-57, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28259837

RESUMO

Currently, monitoring of minimally invasive medical devices is performed using fluoroscopy. The risks associated with fluoroscopy, including increased risk of cancer, make this method especially unsuitable for pediatric device delivery and follow-up procedures. A more suitable method is magnetic resonance (MR) imaging, which makes use of harmless magnetic fields rather than ionizing radiation when imaging the patient; this method is safer for both the patient and the performing technicians. Unfortunately, there is a lack of research available on bulk polymeric materials to enhance MR-visibility for use in medical devices. Here we show the incorporation of both physical and chemical modifying agents for the enhancement of both MR and X-ray visibility. Through the incorporation of these additives, we are able to control shape recovery of the polymer without sacrificing the thermal transition temperatures or the mechanical properties. For long-term implantation, these MR-visible materials do not have altered degradation profiles, and the release of additives is well below significant thresholds for daily dosages of MR-visible compounds. We anticipate our materials to be a starting point for safer, MR-visible medical devices incorporating polymeric components. STATEMENT OF SIGNIFICANCE: Shape memory polymers (SMPs) are polymeric materials with unique shape recovery abilities that are being considered for use in biomedical and medical device applications. This paper presents a methodology for the development of MR and X-ray visible SMPs using either a chemically loaded or physical loaded method during polymer synthesis. Such knowledge is imperative for the development and clinical application of SMPs for biomedical devices, specifically for minimally-invasive vascular occlusion treatments, and while there are studies pertaining to the visibility of polymeric particles, little work has been performed on the utility of biomaterials intended for medical devices and the impact of how adding multiple functionalities, such as imaging, may impact material safety and degradation.


Assuntos
Plásticos Biodegradáveis , Meios de Contraste , Imageamento por Ressonância Magnética , Teste de Materiais , Tomografia por Raios X , Células 3T3 , Animais , Plásticos Biodegradáveis/síntese química , Plásticos Biodegradáveis/química , Plásticos Biodegradáveis/farmacologia , Meios de Contraste/síntese química , Meios de Contraste/química , Meios de Contraste/farmacologia , Camundongos
3.
RSC Adv ; 7(32): 19742-19753, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30288254

RESUMO

Shape memory polymers (SMPs) are promising for non-invasive medical devices and tissue scaffolds, but are limited by a lack of visibility under clinical imaging. Fluorescent dyes are an alternative to radiocontrast agents in medical applications, they can be utilized in chemical sensors and monitors and may be anti-microbial agents. Thus, a fluorescent SMP could be a highly valuable biomaterial system. Here, we show that four fluorescent dyes (phloxine B (PhB), eosin Y (Eos), indocyanine green(IcG), and calcein (Cal)) can be crosslinked into the polymer backbone to enhance material optical properties without alteration of shape memory and thermomechanical properties. Examinations of the emission wavelengths of the materials compared with the dye solutions showed a slight red shift in the peak emissions, indicative of crosslinking of the material. Quantitative analysis revealed that PhB enabled visibility through 1 cm of blood and through soft tissue. We also demonstrate the utility of these methods in combination with radio-opaque microparticle additives and the use of laser-induced shape recovery to allow for rapid shape recovery below the glass transition temperature. The crosslinking of fluorescent dyes into the SMP enables tuning of physical properties and shape memory and independently of the fluorescence functionality. This fluorescent SMP biomaterial system allows for use of multiple imaging modalities with potential application in minimally invasive medical devices.

4.
RSC Adv ; 6(2): 918-927, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27458520

RESUMO

Shape memory polymer (SMP) foams were synthesized with three different nanoparticles (tungsten, silicon dioxide, and aluminum oxide) for embolization of cerebral aneurysms. Ultra-low density SMP foams have previously been utilized for aneurysm occlusion, resulting in a rapid, stable thrombus. However, the small cross section of foam struts can potentially lead to fracture and particulate generation, which would be a serious adverse event for an embolic device. The goal of this study was to improve the mechanical properties of the system by physically incorporating fillers into the SMP matrix. Thermal and mechanical characterization suggested minimal changes in thermal transition of the SMP nanocomposites and improved mechanical strength and toughness for systems with low filler content. Actuation profiles of the three polymer systems were tuned with filler type and content, resulting in faster SMP foam actuation for nanocomposites containing higher filler content. Additionally, thermal stability of the SMP nanocomposites improved with increasing filler concentration, and particulate count remained well below accepted standard limits for all systems. Extraction studies demonstrated little release of silicon dioxide and aluminum oxide from the bulk over 16 days. Tungstun release increased over the 16 day examination period, with a maximum measured concentration of approxiately 2.87 µg/mL. The SMP nanocomposites developed through this research have the potential for use in medical devices due to their tailorable mechanical properties, thermal resisitivity, and actuation profiles.

5.
Artigo em Inglês | MEDLINE | ID: mdl-30034120

RESUMO

Solvent exposure has been investigated to trigger actuation of shape memory polymers (SMPs) as an alternative to direct heating. This study aimed to investigate the feasibility of using dimethyl sulfoxide (DMSO) and ethanol (EtOH) to stimulate polyurethane-based SMP foam actuation and the required solvent concentrations in water for rapid actuation of hydrophobic SMP foams. SMP foams exhibited decreased Tg when submerged in DMSO and EtOH when compared to water submersion. Kinetic DMA experiments showed minimal or no relaxation for all SMP foams in water within 30 min, while SMP foams submerged in EtOH exhibited rapid relaxation within 1 min of submersion. SMP foams expanded rapidly in high concentrations of DMSO and EtOH solutions, where complete recovery over 30 min was observed in DMSO concentrations greater than 90% and in EtOH concentrations greater than 20%. This study demonstrates that both DMSO and EtOH are effective at triggering volume recovery of polyurethane-based SMP foams, including in aqueous environments, and provides promise for use of this actuation technique in various applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...