Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Spectrosc ; : 37028241247574, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715421

RESUMO

The emission spectrum of micron-scale uranium particulates at high temperatures in the ultraviolet, visible, and near-infrared spectral regions is investigated using a heterogeneous shock tube. Temperatures from 3000 to 9000 K are characterized in an inert argon environment and with incremental amounts of added oxygen. Atomic line spectra do not emerge above the continuum emission spectrum until between 4500 and 5000 K in pure argon, and 6100 and 6600 K in 1% oxygen. For 5% oxygen, however, the threshold for atomic emission drops below 3800 K. Uranium monoxide molecular emission in the strongest visible band at 595.4 nm is not observed at any condition. Uncertainties in particle temperature determination in high-temperature shock tube environments are discussed, and limitations to such measurements are presented, such as those from experimental factors such as the powder loading method and expected detection limits of uranium species in relevant conditions.

2.
J Phys Chem A ; 128(12): 2438-2444, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38482814

RESUMO

We synthesized uranium oxide nanoparticles using a plasma flow reactor (PFR) and studied the effects of three different experimental parameters on the resulting morphologies and speciation of the particles: (1) collection duration, (2) collection substrate temperature, and (3) radial collection position due to radial temperature gradients in the PFR. We also induced three distinct temperature histories along the axis of the plasma flow reactor by varying the gas flow rates downstream of the plasma torch. Transmission electron microscopy (TEM) analyses of collected particles showed two phases of uranium oxides (fcc-UO2 and α-UO3). The chemical compositions of the resulting uranium oxide particles were not altered by the three parameters investigated in this work but varied based on the temperature history induced. Preheating of the collection substrate led to deposition of fewer particles, which is attributed to a reduction in thermophoretic force caused by the reduced temperature gradient for preheated substrates. The relative amounts of UO2 to UO3 and particle size varied depending on the cooling history employed during synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...