Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 21(7): 3151-3162, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38804164

RESUMO

Although spearmint oil (SMO) has various pharmacological properties, especially for cancer treatment, its low water solubility results in poor bioavailability. This limits its application as a medicine. One possible solution is to the use of SMO in the form of nanoemulsion, which has already been shown to have anticancer effects. However, the mechanism of SMO nanoemulsion formation remains unclear. The objective of this study was to use molecular dynamics (MD) for clarifying the formation of SMO nanoemulsion with triglycerides (trilaurin, tripalmitin, and triolein) and Cremophor RH40 (PCO40). Nanoemulsions with different SMO:triglyceride ratios and triglyceride types were prepared and analyzed for anticancer activity, droplet size, droplet morphology, and stability. Despite switching the type of carrier oil, SMO nanoemulsions retained strong anticancer effects. A ratio of 80SMO:20triglycerides produced the smallest droplets (<100 nm) and exhibited excellent physical stability after a temperature cycling test. MD simulations showed that polyoxyethylenes of PCO40 are located at the water interface, stabilizing the emulsion structure in an egglike layer. Droplet size correlated with triglyceride concentration, which was consistent with the experimental findings. Decreasing triglyceride content, except for the 90SMO:10triglyceride ratio, led to a decrease in droplet sizes. Hydrogen bond analysis identified interactions between triglyceride-PCO40 and carvone-PCO40. Geometry analysis showed PCO40 had an "L-like" shape, which maximizes the hydrophilic interfaces. These findings highlight the value of MD simulations in understanding the formation mechanism of SMO and triglyceride nanoemulsions. In addition, it might also be beneficial to use MD simulations before the experiment to select the potential composition for nanoemulsions, especially essential oil nanoemulsions.


Assuntos
Emulsões , Simulação de Dinâmica Molecular , Triglicerídeos , Emulsões/química , Triglicerídeos/química , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Óleos de Plantas/química , Estabilidade de Medicamentos , Nanopartículas/química , Polietilenoglicóis/química , Solubilidade , Tamanho da Partícula , Linhagem Celular Tumoral
2.
Pharmaceutics ; 15(11)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38004609

RESUMO

Among natural sources, guava leaf oil (GLO) has emerged as a potential anticancer agent. However, its limited water solubility poses a significant challenge for its use. Oil-in-water nanoemulsions are used to address the limitation of water solubility of GLO prior to its incorporation into orodipersible films. Nanoemulsions containing GLO:virgin coconut oil (VCO) at a ratio of 50:50 to 70:30 presented a small droplet size of approximately 50 nm and a relatively low zeta potential. GLO:VCO at a ratio of 70:30 was selected for incorporation into sodium alginate film at various concentrations ranging from 1% to 30% w/w. Tensile strength and elongation at break relied on the concentration of nanoemulsions as well as the internal structure of films. Fourier transform infrared spectroscopy revealed that GLO was compatible with sodium alginate. Film containing 2% w/w of nanoemulsions (2G_ODF) exhibited effective in vitro antioral cancer activity, with an IC50 of 62.49 ± 6.22 mg/mL; furthermore, its anticancer activity showed no significant difference after storage at 25 °C for 1 year. Moreover, 2G_ODF at IC60 arrested colony formation and cell invasion. There is also evidence that cell death occurred via apoptosis, as indicated by nuclear fragmentation and positive Annexin-V staining. These findings highlight the potential of orodispersible films containing GLO nanoemulsions as a prospective oral anticancer agent.

3.
Drug Deliv ; 30(1): 2234099, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37448320

RESUMO

Itraconazole (ICZ) was prepared in a self-microemulsifying (SM) gel. This gel was intended for use in the oral mucosa, where low volume and flow of saliva result in limited solubility and absorption of drugs that are poorly water-soluble. The drug-loaded gel formulation (ICZ-SM) was selected as a clear solution in the ternary phase diagram to improve the solubility of ICZ. Seven ratios (S1-S7) were prepared by mixing polyoxyl 35 castor oils (P35), a medium chain with a blend of mono-, di-, and triglycerides (MCT), and water. Phase separation of large-sized emulsions by countering with artificial saliva were observed in dilution tests for the formulation contained MCT, P35, and water at the ratios of 70:20:10 (S1), 10:80:10 (S3), and 20:60:20 (S4). Formulations in the ratios of 15:50:35 (S5) and 19:43:38 (S6) produced strong ICZ-SM gels, as shown by rheology tests, whereas the formulations at the ratios of 30:60:10 (S2) and 10:43:47 (S7) exhibited no elasticity. A model of zero-order kinetic (S5) and first-order kinetic (S6) were found to best fit the release kinetics of ICZ from the gels. Time-killing assays revealed that S5 and S6 required less time compared with S2 and the ICZ solution. Furthermore, S5 exhibited the highest increase in cell uptake compared with S2, S6, and the ICZ solution. These findings suggest that the ICZ-SM gel was a free polymer capable of delivering an ICZ for the treatment of oral candidiasis, and that ICZ-SM gels applied locally exhibit enhanced absorption into cells.


Assuntos
Candidíase Bucal , Itraconazol , Humanos , Itraconazol/farmacologia , Candidíase Bucal/tratamento farmacológico , Cinética , Polímeros , Preparações de Ação Retardada , Solubilidade , Géis , Água , Emulsões
4.
Pharmaceutics ; 14(10)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36297420

RESUMO

Quercetin (QCT), a natural flavonoid, is of research interest owing to its pharmacological properties. However, its pharmacokinetic limitations could hinder its widespread therapeutic use. Nanocarriers, especially solid lipid nanoparticles (SLNs), might overcome this constraint. This study aimed to investigate QCT-loaded SLNs prepared via a new approach using a volatile oil. The phase-inversion temperature method was used to incorporate rosemary oil (RMO) into SLNs prepared using solid lipids possessing different chemical structures. Among the solid lipids used in the formulations, trilaurin (TLR) exhibited the smallest particle size and good stability after a temperature cycling test. SLNs prepared with a ratio of RMO to TLR of 1:3 could load QCT with an entrapment efficiency of >60% and drug loading of ~2% w/w. The smallest particle size was achieved using the polyoxyethylene-hydrogenated castor oil RH40, and the particle size depended on the concentration. The drug-release profile of QCT_TLR exhibited prolonged biphasic release for >24 h. QCT_TLR was a safe formulation, as indicated by a cell viability percentage of >75% at <2% v/v. In a computer simulation, the system with RMO enabled smaller sized SLNs than those without RMO. This new discovery shows great promise for producing SLNs via the phase-inversion temperature method with incorporation of volatile oil, particularly for delivering compounds with limited water solubility.

5.
Pharmaceutics ; 14(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36145596

RESUMO

A nifedipine (NP) dry emulsion was fabricated by the adsorption of medium internal-phase emulsions (MIPEs). Simple homogenizers were first used to mix conventional liquid MIPEs, and then a microfluidizer was used to reduce the resulting emulsions' droplet sizes. The dry MIPEs (solid) were produced by adsorbing the emulsions onto solid carriers with a high surface area. The dry MIPEs were diluted in a simulated gastric fluid under gentle agitation to form emulsions. The diluted dry MIPEs were divided into three groups based on an NP content of 0.3%, 0.5%, and 0.7%, with sizes of 5026-5404 nm, 2583-3233 nm, and 1318-1618 nm in diameter, respectively. Powder X-ray diffraction (PXRD) measurements and differential scanning calorimetry (DSC) were used to characterize the physical properties of the dry MIPEs. The samples contained 0.5% or 0.7% drug, 2-4% surfactant, and 8-16% oil (5RH2/8, 7RH2/8, and 7RH4/16) and showed the characteristic peak for NP. No NP peak was observed in formulations with 0.3% NP and any oil-phase content (3RH2/8, 3RH4/16, and 3RH8/32). The formulations with 0.5% drug, 4-8% surfactant, 16-32% oil (5RH4/16 and 5RH8/32) and those with 0.7% drug, 8% surfactant, and 32% oil (7RH8/32) also did not show the peak for NP. These findings demonstrated that microfluidization improved the solubility of NP in the formulations. The subsequent drug dissolution results were consistent with the DSC thermogram and PXRD pattern results. 3RH2/8, 3RH4/16, 3RH8/32, 5RH4/16, 5RH8/32, and 7RH8/32 were completely dissolved and showed higher dissolved NP amounts than 5RH2/8, 7RH2/8, 7RH4/16, and NP powder. The lowest mean dissolution time was for 7RH8/32 (13.31 ± 0.87 min). Caco-2 cells were used to determine drug uptake, and 7RH8/32 showed the maximum intracellular uptake (10.89%). After storage under accelerated and normal conditions (3 and 6 months), the selected formulations remained stable. The developed formulations can be used to improve NP solubility and absorption.

6.
Pharmaceutics ; 14(5)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35631524

RESUMO

Recently, essential oil from Amomum kravanh (AMO) was reported to exert anti-oral cancer effects. Although it was more effective after being loaded into nanoemulsions, AMO without an Ostwald ripening inhibitor was unable to form stable nanoemulsions because of the Ostwald ripening phenomenon. In this study, we examined the influence of Ostwald ripening inhibitors, such as fixed oils and polyethylene glycol 4000 (PEG 4000), on nanoemulsion properties prepared by a phase inversion temperature method. Several fixed oils, including virgin coconut oil (VCO), palm oil (PMO), olive oil (OLO), and PEG 4000, were evaluated, and their Ostwald ripening inhibitory effects were compared. The results suggest that the type and ratio of AMO:fixed oils influence the formation and characteristics of nanoemulsions. PEG 4000 was unable to produce nanoemulsions; however, stable nanoemulsions with small droplet sizes were observed in preparations containing OLO and VCO at an AMO:fixed oil ratio of 80:20, which may be the result of specific molecular interactions among the components. Using an MTT assay, we demonstrated that the AMO:OLO (80:20) nanoemulsion produced the most significant cytotoxic effect on oral cancer cells with a percentage of 99.68 ± 0.56%. Furthermore, the AMO:OLO 80:20 nanoemulsion inhibits metastasis and induces oral cancer cell death through the intrinsic apoptosis pathway. In conclusion, AMO nanoemulsion with anti-oral cancer activity was successfully produced by varying the amount and type of fixed oils. In the future, this discovery may lead to the development of stable nanoemulsions employing additional volatile oils.

7.
AAPS PharmSciTech ; 23(3): 87, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292880

RESUMO

Recently, monolaurin (ML) has received great interest due to its possible use as an alternative antifungal. However, the limited water solubility of ML is still a major obstacle to its formulation and application. Gel-like microemulsions are one of the promising carriers for low-water-solubility substances due to both the advantages of gels and microemulsions and may be applied for ML. In this study, ML was incorporated into gel-like microemulsions and evaluated for its physicochemical and antifungal properties. The results indicated that the properties of gel-like microemulsion changed after the incorporation of ML, suggesting that ML can induce the transition of internal structure. When simulating the oral cavity environment, changes in the microstructure were observed and depended on the times of dilution. The lamellar structure was formed at 1.5-2 times dilution. However, this structure was disrupted after dilution five times or more. The structural change following dilution was associated with the release profiles. After contacting the formulations with the medium, ML was promptly released, with the majority of ML being released within 2 h. Regarding the antifungal assay, the ML-loaded gel-like microemulsions decreased the survival of Candida albicans within 3 h, although ML was immediately released, suggesting that the ML-loaded in oil droplets required time to permeate through the fungal cell wall. Additionally, the gel-like microemulsions possessed acceptable stability after the temperature cycling test. Therefore, gel-like microemulsions can be a possible carrier for ML loading, and ML-loaded gel-like microemulsions may be applied as an alternative antifungal preparation in the future. Graphical abstract.


Assuntos
Antifúngicos , Candidíase , Antifúngicos/química , Antifúngicos/farmacologia , Emulsões/química , Géis/química , Humanos , Lauratos , Monoglicerídeos
8.
Polymers (Basel) ; 13(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34503003

RESUMO

Ternary solid solutions composed of nifedipine (NDP), amino methacrylate copolymer (AMCP), and polysorbate (PS) 20, 60, or 65 were prepared using a solvent evaporation method. The dissolution profiles of NDP were used to study the effect of the addition of polysorbate based on hydrophilic properties. A solid solution of NDP and AMCP was recently developed; however, the dissolution of NDP was <70%. In the present study, polysorbate was added to improve the dissolution of the drug by altering its hydrophilicity. The suitable formulation contained NDP and AMCP at a ratio of 1:4 and polysorbate at a concentration of 0.1%, 0.3%, or 0.6%. Differential scanning calorimetry and powder X-ray diffraction were used to examine the solid solutions. No peak representing crystalline NDP was observed in any solid solution samples, suggesting that the drug was molecularly dispersed in AMCP. The NDP dissolution from NDP powder and solid solution without PS were 16.82% and 58.19%, respectively. The highest dissolution of NDP of approximately 95.25% was noted at 120 min for the formulation containing 0.6% PS20. Linear correlations were observed between the surface free energy and percentages of dissolved NDP (R2 = 0.7115-0.9315). Cellular uptake across Caco-2 was selected to determine the drug permeability. The percentages of cellular uptake from the NDP powder, solid solution without and with PS20 were 0.25%, 3.60%, and 7.27%, respectively.

9.
Pharm Dev Technol ; 25(3): 340-350, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31814494

RESUMO

Kaempferia parviflora, a medicinal herb, treats hypertension and promotes longevity with good health and well-being. Its bioactive component is poorly soluble in water, resulting in poor absorption. This study aimed to enhance the bioavailability of K. parviflora dichloromethane (KPD) extract using a self-nanoemulsifying drug delivery system (SNEDDS). KPD was dissolved in diethylene glycol monoethyl, polyoxyl-35 castor oil and caprylic/capric glyceride, and clear yellow SNEDDS solution was obtained. The methoxyflavone markers were used for content and dissolution analysis. Solid SNEDDS was prepared by stepwise mixing of KPD using a mortar and pestle (1:1 ratio) with five solid carriers: Aerosil® 200, Florite® RE, Neusilin® US2 (NEUS), Fujicalin®, and Neusilin® UFL2. The USP apparatus II with simulated gastric fluid USP (SGF without pepsin, pH 1.2) was used in order to perform the in vitro dissolution. The methoxyflavones dissolution at 60 min from KPD, SEDDS, and SNEDDS/NEUS were approximately 16, 92, and 73%, respectively. The pharmacokinetic profiles of methoxyflavones for oral administration were studied using Wistar rats; the areas under the curve of SNEDDS/NEUS (1.77-fold) and SNEDDS (5.38-fold) were significantly higher than that of KPD. The developed formulations showed good stability after storage for 6 months under accelerated and normal conditions.


Assuntos
Sistemas de Liberação de Medicamentos , Flavonas/administração & dosagem , Extratos Vegetais/administração & dosagem , Zingiberaceae/química , Administração Oral , Animais , Área Sob a Curva , Disponibilidade Biológica , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Emulsões , Flavonas/isolamento & purificação , Flavonas/farmacocinética , Masculino , Extratos Vegetais/farmacocinética , Ratos , Ratos Wistar , Solubilidade , Água/química
10.
Asian J Pharm Sci ; 12(2): 124-133, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32104321

RESUMO

Kaempferia parviflora, a plant in the family Zingiberaceae, has been used in Thai traditional medicines for treating hypertension and promoting longevity with good health and well-being. However, its limited aqueous solubility and low dissolution restrict its bioavailability. The aim of the study was therefore to improve the dissolution rate of K. parviflora extracted with dichloromethane (KPD) by solid dispersions. Different water-soluble polymers were applied to improve dissolution of KPD. The solid dispersions in different ratios were prepared by solvent evaporation method. Only hydroxypropyl methylcellulose (HPMC) and polyvinyl alcohol-polyethylene glycol grafted copolymer (PVA-co-PEG) could be used to produce homogeneous, powdered solid dispersions. Physical characterization by scanning electron microscopy, hot stage microscopy, differential scanning calorimetry and powder X-ray diffractometry, in comparison with corresponding physical mixtures, showed the changes in solid state during the formation of solid dispersions. Dissolution of a selected marker, 5,7,4'-trimethoxyflavone (TMF), from KPD/HPMC and KPD/PVA-co-PEG solid dispersions was significantly improved, compared with pure KPD. The dissolution enhancement by solid dispersion was influenced by both type and content of polymers. The stability of KPD/HPMC and KPD/PVA-co-PEG solid dispersions was also good after 6-month storage in both long-term and accelerated conditions. These results identified that the KPD/HPMC and KPD/PVA-co-PEG solid dispersions were an effective new approach for pharmaceutical application of K. parviflora.

11.
Asian J Pharm Sci ; 12(4): 335-343, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32104344

RESUMO

Solid dispersions of nifedipine (NDP), a poorly water-soluble drug, and amino methacrylate copolymer (AMCP) with aid of adsorbent, that is, fumed silica, talcum, calcium carbonate, titanium dioxide, and mesoporous silica from rice husks (SRH), were prepared by solvent method. The physicochemical properties of solid dispersions, compared to their physical mixtures, were determined using powder X-ray diffractometry (PXRD) and differential scanning calorimetry (DSC). The surface morphology of the prepared solid dispersions was examined by scanning electron microscopy (SEM). The dissolution of NDP from solid dispersions was compared to NDP powders. The effect of adsorbent type on NDP dissolution was also examined. The dissolution of NDP increased with the ratio of NDP:AMCP:adsorbent of 1:4:1 when compared to the other formulations. As indicated from PXRD patterns, DSC thermograms and SEM images, NDP was molecularly dispersed within polymer carrier or in an amorphous form, which confirmed the better dissolution of solid dispersions. Solid dispersions containing SRH provided the highest NDP dissolution, due to a porous nature of SRH, allowing dissolved drug to fill in the pores and consequently dissolve in the medium. The results suggested that solid dispersions containing adsorbents (SRH in particular) demonstrated improved dissolution of poorly water-soluble drug when compared to NDP powder.

12.
Eur J Pharm Biopharm ; 91: 25-34, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25615879

RESUMO

The objective of this study was to prepare spontaneous emulsifying powder (SEP) for improving dissolution and enhancing oral bioavailability of a poorly water-soluble drug, nifedipine (NDP). In order to investigate the effects of solid carrier properties, such as surface area and pore size, and a concurrent food intake on absorption of NDP in rats, different SEP formulations were prepared by adsorbing liquid spontaneous emulsifying formulation (SEF), composing of polyoxyl 35 castor oil, caprylic/capric glyceride and diethylene glycol monoethyl ether at a ratio of 1:1:8, onto various solid carriers (i.e., silica (FS), porous calcium silicate (PCS) and porous silicon dioxide). The solid characterization by scanning electron microscopy, differential scanning calorimetry and powder X-ray diffraction revealed the absence of crystalline NDP in the formulations. SEP also demonstrated excellent spontaneous emulsification properties similar to SEF. The droplet size of emulsions formed after dilution was less than 200 nm. The solid carriers (particularly PCS) had significant and positive effect in drug dissolution; the mean dissolution time of SEP containing PCS was considerably improved. SEP also provided a good stability after storage in accelerated and long-term conditions for 6 months. The bioavailability study resulted in enhanced values of C(max) and AUC for SEP formulations, when tested in both fasted and fed rats. Furthermore, comparing the AUC in fasted and fed rats, NDP powder exhibited a significant food effect. The difference in bioavailability of NDP in fed compared to fasted state can be avoided by using SEP.


Assuntos
Bloqueadores dos Canais de Cálcio/administração & dosagem , Compostos de Cálcio/química , Portadores de Fármacos/administração & dosagem , Interações Alimento-Droga , Nifedipino/administração & dosagem , Silicatos/química , Dióxido de Silício/química , Administração Oral , Animais , Disponibilidade Biológica , Bloqueadores dos Canais de Cálcio/análise , Bloqueadores dos Canais de Cálcio/química , Bloqueadores dos Canais de Cálcio/farmacocinética , Fenômenos Químicos , Química Farmacêutica , Portadores de Fármacos/análise , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Armazenamento de Medicamentos , Emulsões , Absorção Intestinal , Masculino , Nifedipino/análise , Nifedipino/química , Nifedipino/farmacocinética , Tamanho da Partícula , Porosidade , Pós , Ratos Wistar , Propriedades de Superfície
13.
AAPS PharmSciTech ; 16(2): 435-43, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25367002

RESUMO

Self-nanoemulsifying drug delivery system (SNEDDS) can be used to improve dissolution of poorly water-soluble drugs. The objective of this study was to prepare SNEDDS by using ternary phase diagram and investigate their spontaneous emulsifying property, dissolution of nifedipine (NDP), as well as the pharmacokinetic profile of selected SNEDDS formulation. The results showed that the composition of the SNEDDS was a great importance for the spontaneous emulsification. Based on ternary phase diagram, the region giving the SNEDDS with emulsion droplet size of less than 300 nm after diluting in aqueous medium was selected for further formulation. The small-angle X-ray scattering curves showed no sharp peak after dilution at different percentages of water, suggesting non-ordered structure. The system was found to be robust in different dilution volumes; the droplet size was in nanometer range. In vitro dissolution study showed remarkable increase in dissolution of NDP from SNEDDS formulations compared with NDP powders. The pharmacokinetic study of selected SNEDDS formulation in male Wistar rats revealed the improved maximum concentration and area under the curve. Our results proposed that the developed SNEDDS formations could be promising to improve the dissolution and oral bioavailability of NDP.


Assuntos
Emulsões/química , Nanopartículas/química , Nifedipino/química , Animais , Disponibilidade Biológica , Química Farmacêutica/métodos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Masculino , Tamanho da Partícula , Ratos , Ratos Wistar , Solubilidade , Tensoativos/química
14.
AAPS PharmSciTech ; 15(2): 456-64, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24452500

RESUMO

A simple but novel mixed surfactant system was designed to fabricate a self-nanoemulsifying drug delivery system (SNEDDS) based on hydrophilic-lipophilic balance (HLB) value. The impacts of HLB and molecular structure of surfactants on the formation of SNEDDS were investigated. After screening various oils and surfactants, nifedipine (NDP)-loaded liquid SNEDDS was formulated with Imwitor(®) 742 as oil and Tween(®)/Span(®) or Cremophor(®)/Span(®) as mixed surfactant. Droplet size of the emulsions obtained after dispersing SNEDDS containing Tween(®)/Span(®) in aqueous medium was independent of the HLB of a mixed surfactant. The use of the Cremophor(®)/Span(®) blend gave nanosized emulsion at higher HLB. The structure of the surfactant was found to influence the emulsion droplet size. Solid SNEDDS was then prepared by adsorbing NDP-loaded liquid SNEDDS comprising Cremophor(®) RH40/Span(®) 80 onto Aerosil(®) 200 or Aerosil(®) R972 as inert solid carrier. Solid SNEDDS formulations using higher amounts (30-50% w/w) of Aerosil(®) 200 exhibited good flow properties with smooth surface and preserved the self-emulsifying properties of liquid SNEDDS. Differential scanning calorimetry and X-ray diffraction studies of solid SNEDDS revealed the transformation of the crystalline structure of NDP due to its molecular dispersion state. In vitro dissolution study demonstrated higher dissolution of NDP from solid SNEDDS compared with NDP powder.


Assuntos
Bloqueadores dos Canais de Cálcio/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanotecnologia , Nifedipino/administração & dosagem , Tensoativos/química , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...