Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 36(47): 14173-14180, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33205971

RESUMO

We have recently described a new potential use for Langmuir-Blodgett films of surfactants containing redox-inert metal ions in the inhibition of corrosion and have shown good qualitative results for both iron and aluminum surfaces. In this study we proceed to quantify electrochemically the viability of gallium(III)- and zinc(II)-containing metallosurfactants [GaIII(LN2O3)] (1) and [ZnII(LN2O2)H2O] (2) as mitigators for iron corrosion in saline and acidic media. We evaluate their charge transfer suppression and then focus on potentiodynamic polarization and impedance spectroscopy studies, including detailed SEM data to interrogate their metal dissolution/oxygen reduction rate mitigation abilities. Both complexes show some degree of mitigation, with a more pronounced activity in saline than in acidic medium.

2.
Chemistry ; 25(62): 14048-14053, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31565813

RESUMO

The use of metallosurfactants to prevent pitting corrosion of aluminum surfaces is discussed based on the behavior of the metallosurfactants [ZnII (LN2O2 )H2 O] (1) and [GaIII (LN2O3 )] (2). These species were deposited as multilayer Langmuir-Blodgett films and characterized by IR reflection absorption spectroscopy and UV/Vis spectroscopy. Scanning electron microscopy images, potentiodynamic polarization experiments, and electrochemical impedance spectroscopy were used to assess corrosion mitigation. Both metallosurfactants demonstrate superior anticorrosion activity due to the presence of redox-inactive 3d10 metal ions that enhance the structural resistance of the ordered molecular films and limit chloride mobility and electron transfer.

3.
Dalton Trans ; 47(40): 14352-14361, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30215065

RESUMO

Targeting the development of stimulus-responsive molecular materials with electronic functionality, we have synthesized and studied the redox and electronic properties of a new bimetallic iron hydrophobe [FeIII2(LN4O6)] (1). The new H6LN4O6 ligand displays bicompartmental topology capable of accomodating two five-coordinate HSFeIII ions bridged by tetraaminobenzene at a close distance of ca. 8 Å. We show that the metal-based reduction processes in (1) proceed sequentially, as observed for electronically coupled metal centers. This species forms a well-defined Pockels-Langmuir film at the air-water interface, with collapse pressure of 32 mN m-1. Langmuir-Blodgett monolayers were deposited on gold substrates and used to investigate current-voltage (I-V) measurements. This unprecedented bimetallic hydrophobe [FeIII2(LN4O6)] (1) shows unquestionable molecular rectification and displays a rectification ratio RR between 2 and 15.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...