Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Psychiatry Glob Open Sci ; 4(4): 100313, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38706704

RESUMO

Background: Development of synaptic activity is a key neuronal characteristic that relies largely on interactions between neurons and astrocytes. Although astrocytes have known roles in regulating synaptic function and malfunction, the use of human- or donor-specific astrocytes in disease models is still rare. Rodent astrocytes are routinely used to enhance neuronal activity in cell cultures, but less is known about how human astrocytes influence neuronal activity. Methods: We established human induced pluripotent stem cell-derived neuron-astrocyte cocultures and studied their functional development on microelectrode array. We used cell lines from 5 neurotypical control individuals and 3 pairs of monozygotic twins discordant for schizophrenia. A method combining NGN2 overexpression and dual SMAD inhibition was used for neuronal differentiation. The neurons were cocultured with human induced pluripotent stem cell-derived astrocytes differentiated from 6-month-old astrospheres or rat astrocytes. Results: We found that the human induced pluripotent stem cell-derived cocultures developed complex network bursting activity similar to neuronal cocultures with rat astrocytes. However, the effect of NMDA receptors on neuronal network burst frequency (NBF) differed between cocultures containing human or rat astrocytes. By using cocultures derived from patients with schizophrenia and unaffected individuals, we found lowered NBF in the affected cells. We continued by demonstrating how astrocytes from an unaffected individual rescued the lowered NBF in the affected neurons by increasing NMDA receptor activity. Conclusions: Our results indicate that astrocytes participate in the regulation of neuronal NBF through a mechanism that involves NMDA receptors. These findings shed light on the importance of using human and donor-specific astrocytes in disease modeling.


Nerve cell connections called synapses are formed in interaction with astrocytes, the main non-neuronal cell type of the brain. In vitro work commonly uses rodent astrocytes to enhance activity in human-derived neuronal cell cultures, but differences in using rodent versus human astrocytes are not well understood. We found that the electrical activity of nerve cell networks in cultures consisting of human cortical nerve cells and human astrocytes is altered when the astrocytes are from patients with schizophrenia, relative to neurotypical individuals. The effect of human astrocytes on these networks differed from rodent astrocytes, indicating the potential importance of a fully human culture system.

2.
Cells ; 11(24)2022 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-36552881

RESUMO

The PSEN1 ΔE9 mutation causes a familial form of Alzheimer's disease (AD) by shifting the processing of amyloid precursor protein (APP) towards the generation of highly amyloidogenic Aß42 peptide. We have previously shown that the PSEN1 ΔE9 mutation in human-induced pluripotent stem cell (iPSC)-derived astrocytes increases Aß42 production and impairs cellular responses. Here, we injected PSEN1 ΔE9 mutant astrosphere-derived glial progenitors into newborn mice and investigated mouse behavior at the ages of 8, 12, and 16 months. While we did not find significant behavioral changes in younger mice, spatial learning and memory were paradoxically improved in 16-month-old PSEN1 ΔE9 glia-transplanted male mice as compared to age-matched isogenic control-transplanted animals. Memory improvement was associated with lower levels of soluble, but not insoluble, human Aß42 in the mouse brain. We also found a decreased engraftment of PSEN1 ΔE9 mutant cells in the cingulate cortex and significant transcriptional changes in both human and mouse genes in the hippocampus, including the extracellular matrix-related genes. Overall, the presence of PSEN1 ΔE9 mutant glia exerted a more beneficial effect on aged mouse brain than the isogenic control human cells likely as a combination of several factors.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Animais , Humanos , Masculino , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Astrócitos/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Aprendizagem Espacial , Envelhecimento
3.
Sci Rep ; 12(1): 5391, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354908

RESUMO

Irritable bowel syndrome (IBS) is a common disorder characterized by chronic abdominal pain and changes in bowel movements. Visceral hypersensitivity is thought to be responsible for pain complaints in a subset of patients. In an IBS-like animal model, visceral hypersensitivity was triggered by intestinal fungi, and lower mycobiota α-diversity in IBS patients was accompanied by a shift toward increased presence of Candida albicans and Saccharomyces cerevisiae. Yet, this shift was observed in hypersensitive as well as normosensitive patients and diversity did not differ between IBS subgroups. The latter suggests that, when a patient changes from hyper- to normosensitivity, the relevance of intestinal fungi is not necessarily reflected in compositional mycobiota changes. We now confirmed this notion by performing ITS1 sequencing on an existing longitudinal set of fecal samples. Since ITS1 methodology does not recognize variations within species, we next focused on heterogeneity within cultured healthy volunteer and IBS-derived C. albicans strains. We observed inter- and intra-individual genomic variation and partial clustering of strains from hypersensitive patients. Phenotyping showed differences related to growth, yeast-to-hyphae morphogenesis and gene expression, specifically of the gene encoding fungal toxin candidalysin. Our investigations emphasize the need for strain-specific cause-and-effect studies within the realm of IBS research.


Assuntos
Candida albicans , Síndrome do Intestino Irritável , Dor Abdominal/complicações , Animais , Candida albicans/genética , Fezes/microbiologia , Humanos , Intestinos , Síndrome do Intestino Irritável/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...