Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4459, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796433

RESUMO

The magnetic proximity effect can induce a spin dependent exchange shift in the band structure of graphene. This produces a magnetization and a spin polarization of the electron/hole carriers in this material, paving the way for its use as an active component in spintronics devices. The electrostatic control of this spin polarization in graphene has however never been demonstrated so far. We show that interfacing graphene with the van der Waals antiferromagnet CrSBr results in an unconventional manifestation of the quantum Hall effect, which can be attributed to the presence of counterflowing spin-polarized edge channels originating from the spin-dependent exchange shift in graphene. We extract an exchange shift ranging from 27 - 32 meV, and show that it also produces an electrostatically tunable spin polarization of the electron/hole carriers in graphene ranging from - 50% to + 69% in the absence of a magnetic field. This proof of principle provides a starting point for the use of graphene as an electrostatically tunable source of spin current and could allow this system to generate a large magnetoresistance in gate tunable spin valve devices.

2.
Nano Lett ; 16(8): 4825-30, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27399228

RESUMO

Electrical control of spin signals and long distance spin transport are major requirements in the field of spin electronics. Here, we report the efficient guiding of spin currents at room temperature in high mobility hexagonal boron nitride encapsulated bilayer graphene using carrier drift. Our experiments, together with modeling, show that the spin relaxation length, that is 7.7 µm at zero bias, can be tuned from 0.6 to 90 µm when applying a DC current of ∓90 µA, respectively. Our results also show that we are able to direct spin currents to either side of a spin injection contact. Eighty-eight percent of the injected spins flows to the left when Idc = -90 µA and eighty-two percent flows to the right when the drift current is reversed. These results show the potential of carrier drift for spin-based logic operations and devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...