Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Genet Med ; 26(9): 101174, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38847193

RESUMO

PURPOSE: We identified 2 individuals with de novo variants in SREBF2 that disrupt a conserved site 1 protease (S1P) cleavage motif required for processing SREBP2 into its mature transcription factor. These individuals exhibit complex phenotypic manifestations that partially overlap with sterol regulatory element binding proteins (SREBP) pathway-related disease phenotypes, but SREBF2-related disease has not been previously reported. Thus, we set out to assess the effects of SREBF2 variants on SREBP pathway activation. METHODS: We undertook ultrastructure and gene expression analyses using fibroblasts from an affected individual and utilized a fly model of lipid droplet (LD) formation to investigate the consequences of SREBF2 variants on SREBP pathway function. RESULTS: We observed reduced LD formation, endoplasmic reticulum expansion, accumulation of aberrant lysosomes, and deficits in SREBP2 target gene expression in fibroblasts from an affected individual, indicating that the SREBF2 variant inhibits SREBP pathway activation. Using our fly model, we discovered that SREBF2 variants fail to induce LD production and act in a dominant-negative manner, which can be rescued by overexpression of S1P. CONCLUSION: Taken together, these data reveal a mechanism by which SREBF2 pathogenic variants that disrupt the S1P cleavage motif cause disease via dominant-negative antagonism of S1P, limiting the cleavage of S1P targets, including SREBP1 and SREBP2.

2.
Science ; 384(6694): eadf5489, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662826

RESUMO

Tubulin, one of the most abundant cytoskeletal building blocks, has numerous isotypes in metazoans encoded by different conserved genes. Whether these distinct isotypes form cell type- and context-specific microtubule structures is poorly understood. Based on a cohort of 12 patients with primary ciliary dyskinesia as well as mouse mutants, we identified and characterized variants in the TUBB4B isotype that specifically perturbed centriole and cilium biogenesis. Distinct TUBB4B variants differentially affected microtubule dynamics and cilia formation in a dominant-negative manner. Structure-function studies revealed that different TUBB4B variants disrupted distinct tubulin interfaces, thereby enabling stratification of patients into three classes of ciliopathic diseases. These findings show that specific tubulin isotypes have distinct and nonredundant subcellular functions and establish a link between tubulinopathies and ciliopathies.


Assuntos
Axonema , Centríolos , Cílios , Transtornos da Motilidade Ciliar , Tubulina (Proteína) , Animais , Humanos , Camundongos , Axonema/metabolismo , Centríolos/metabolismo , Cílios/metabolismo , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/metabolismo , Mutação , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Masculino , Feminino , Camundongos Knockout
3.
J Am Chem Soc ; 146(13): 8858-8864, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513215

RESUMO

Luminescence of open-shell 3d metal complexes is often quenched due to ultrafast intersystem crossing (ISC) and cooling into a dark metal-centered excited state. We demonstrate successful activation of fluorescence from individual nickel phthalocyanine (NiPc) molecules in the junction of a scanning tunneling microscope (STM) by resonant energy transfer from other metal phthalocyanines at low temperature. By combining STM, scanning tunneling spectroscopy, STM-induced luminescence, and photoluminescence experiments as well as time-dependent density functional theory, we provide evidence that there is an activation barrier for the ISC, which, in most experimental conditions, is overcome. We show that this is also the case in an electroluminescent tunnel junction where individual NiPc molecules adsorbed on an ultrathin NaCl decoupling film on a Ag(111) substrate are probed. However, when an MPc (M = Zn, Pd, Pt) molecule is placed close to NiPc by means of STM atomic manipulation, resonant energy transfer can excite NiPc without overcoming the ISC activation barrier, leading to Q-band fluorescence. This work demonstrates that the thermally activated population of dark metal-centered states can be avoided by a designed local environment at low temperatures paired with directed molecular excitation into vibrationally cold electronic states. Thus, we can envisage the use of luminophores based on more abundant transition metal complexes that do not rely on Pt or Ir by restricting vibration-induced ISC.

5.
Am J Hum Genet ; 110(11): 1919-1937, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37827158

RESUMO

Misregulation of histone lysine methylation is associated with several human cancers and with human developmental disorders. DOT1L is an evolutionarily conserved gene encoding a lysine methyltransferase (KMT) that methylates histone 3 lysine-79 (H3K79) and was not previously associated with a Mendelian disease in OMIM. We have identified nine unrelated individuals with seven different de novo heterozygous missense variants in DOT1L through the Undiagnosed Disease Network (UDN), the SickKids Complex Care genomics project, and GeneMatcher. All probands had some degree of global developmental delay/intellectual disability, and most had one or more major congenital anomalies. To assess the pathogenicity of the DOT1L variants, functional studies were performed in Drosophila and human cells. The fruit fly DOT1L ortholog, grappa, is expressed in most cells including neurons in the central nervous system. The identified DOT1L variants behave as gain-of-function alleles in flies and lead to increased H3K79 methylation levels in flies and human cells. Our results show that human DOT1L and fly grappa are required for proper development and that de novo heterozygous variants in DOT1L are associated with a Mendelian disease.


Assuntos
Anormalidades Congênitas , Deficiências do Desenvolvimento , Histona-Lisina N-Metiltransferase , Humanos , Mutação com Ganho de Função , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Histonas/metabolismo , Lisina , Metilação , Metiltransferases/genética , Neoplasias/genética , Drosophila/genética , Proteínas de Drosophila/genética , Deficiências do Desenvolvimento/genética , Anormalidades Congênitas/genética
6.
Sci Transl Med ; 15(698): eabo3189, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37256937

RESUMO

A critical step in preserving protein homeostasis is the recognition, binding, unfolding, and translocation of protein substrates by six AAA-ATPase proteasome subunits (ATPase-associated with various cellular activities) termed PSMC1-6, which are required for degradation of proteins by 26S proteasomes. Here, we identified 15 de novo missense variants in the PSMC3 gene encoding the AAA-ATPase proteasome subunit PSMC3/Rpt5 in 23 unrelated heterozygous patients with an autosomal dominant form of neurodevelopmental delay and intellectual disability. Expression of PSMC3 variants in mouse neuronal cultures led to altered dendrite development, and deletion of the PSMC3 fly ortholog Rpt5 impaired reversal learning capabilities in fruit flies. Structural modeling as well as proteomic and transcriptomic analyses of T cells derived from patients with PSMC3 variants implicated the PSMC3 variants in proteasome dysfunction through disruption of substrate translocation, induction of proteotoxic stress, and alterations in proteins controlling developmental and innate immune programs. The proteostatic perturbations in T cells from patients with PSMC3 variants correlated with a dysregulation in type I interferon (IFN) signaling in these T cells, which could be blocked by inhibition of the intracellular stress sensor protein kinase R (PKR). These results suggest that proteotoxic stress activated PKR in patient-derived T cells, resulting in a type I IFN response. The potential relationship among proteosome dysfunction, type I IFN production, and neurodevelopment suggests new directions in our understanding of pathogenesis in some neurodevelopmental disorders.


Assuntos
Interferon Tipo I , Complexo de Endopeptidases do Proteassoma , Animais , Humanos , Camundongos , Adenosina Trifosfatases/genética , Drosophila melanogaster , Expressão Gênica , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica
7.
Am J Hum Genet ; 110(5): 774-789, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37054711

RESUMO

The Integrator complex is a multi-subunit protein complex that regulates the processing of nascent RNAs transcribed by RNA polymerase II (RNAPII), including small nuclear RNAs, enhancer RNAs, telomeric RNAs, viral RNAs, and protein-coding mRNAs. Integrator subunit 11 (INTS11) is the catalytic subunit that cleaves nascent RNAs, but, to date, mutations in this subunit have not been linked to human disease. Here, we describe 15 individuals from 10 unrelated families with bi-allelic variants in INTS11 who present with global developmental and language delay, intellectual disability, impaired motor development, and brain atrophy. Consistent with human observations, we find that the fly ortholog of INTS11, dIntS11, is essential and expressed in the central nervous systems in a subset of neurons and most glia in larval and adult stages. Using Drosophila as a model, we investigated the effect of seven variants. We found that two (p.Arg17Leu and p.His414Tyr) fail to rescue the lethality of null mutants, indicating that they are strong loss-of-function variants. Furthermore, we found that five variants (p.Gly55Ser, p.Leu138Phe, p.Lys396Glu, p.Val517Met, and p.Ile553Glu) rescue lethality but cause a shortened lifespan and bang sensitivity and affect locomotor activity, indicating that they are partial loss-of-function variants. Altogether, our results provide compelling evidence that integrity of the Integrator RNA endonuclease is critical for brain development.


Assuntos
Proteínas de Drosophila , Doenças do Sistema Nervoso , Adulto , Animais , Humanos , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mutação/genética , RNA Mensageiro
8.
Pediatr Nephrol ; 38(2): 605-609, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35695966

RESUMO

BACKGROUND: Bardet-Biedl syndrome (BBS) is a rare, autosomal recessive ciliopathy characterized by early onset retinal dystrophy, renal anomalies, postaxial polydactyly, and cognitive impairment with considerable phenotypic heterogeneity. BBS results from biallelic pathogenic variants in over 20 genes that encode key proteins required for the assembly or primary ciliary functions of the BBSome, a heterooctameric protein complex critical for homeostasis of primary cilia. While variants in BBS1 are most frequently identified in affected individuals, the renal and pulmonary phenotypes associated with BBS1 variants are reportedly less severe than those seen in affected individuals with pathogenic variants in the other BBS-associated genes. CASE-DIAGNOSIS: We report an infant with severe renal dysplasia and lethal pulmonary hypoplasia who was homozygous for the most common BBS1 pathogenic variant (c.1169 T > G; p.M390R) and also carried a predicted pathogenic variant in TTC21B (c.1846C > T; p.R616C), a genetic modifier of disease severity of ciliopathies associated with renal dysplasia and pulmonary hypoplasia. CONCLUSIONS: This report expands the phenotypic spectrum of BBS with the first infant with lethal neonatal respiratory failure associated with biallelic, pathogenic variants in BBS1 and a monoallelic, predicted pathogenic variant in TTC21B. BBS should be considered among the ciliopathies in the differential diagnosis of neonates with renal dysplasia and severe respiratory failure.


Assuntos
Síndrome de Bardet-Biedl , Insuficiência Respiratória , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Fenótipo
9.
Neurol Genet ; 8(6): e200036, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36524104

RESUMO

Objectives: Cerebellar ataxia with neuropathy and bilateral vestibular areflexia syndrome (CANVAS) results from biallelic intronic pentanucleotide repeats in RFC1. We describe an adult male proband with progressive imbalance, cerebellar atrophy, somatosensory neuronopathy, and absence of peripheral vestibular function for whom clinical testing demonstrated a heterozygous RFC1 expansion consistent with an unaffected carrier. Methods: We performed whole-genome sequencing (WGS) on peripheral blood DNA samples from the proband and his unaffected mother. We performed DNA long-read sequencing and synthesized complementary DNA from RNA using peripheral blood from the proband. Results: WGS confirmed the maternally inherited RFC1 expansion and identified a rare, nonsense RFC1 variant: c.C1147T; p.R383X in the proband but not the maternal DNA sample. RFC1 variants were confirmed in trans with long-read sequencing. Functional studies demonstrated the absence of complementary DNA (cDNA) transcript from the c.C1147T; p.R383X variant supporting nonsense-mediated decay of this transcript. Discussion: We report an adult with CANVAS due to compound heterozygous pathogenic RFC1 variants: the pathogenic intronic pentanucleotide expansion confirmed in trans with a nonsense variant. This report represents a novel molecular mechanism for CANVAS. Sequencing for RFC1 should be considered for adults meeting clinical criteria for the CANVAS phenotype if only a heterozygous pathogenic RFC1 expansion is identified.

10.
ACS Nano ; 16(3): 4876-4883, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35271251

RESUMO

Artificial lattices derived from assembled atoms on a surface using scanning tunneling microscopy present a platform to create matter with tailored electronic, magnetic, and topological properties. However, artificial lattice studies to date have focused exclusively on surfaces with weak spin-orbit coupling. Here, we illustrate the creation and characterization of quantum corrals from iron atoms on the prototypical Rashba surface alloy BiCu2, using low-temperature scanning tunneling microscopy and spectroscopy. We observe very complex interference patterns that result from the interplay of the size of the confinement potential, the intricate multiband scattering, and hexagonal warping from the underlying band structure. On the basis of a particle-in-a-box model that accounts for the observed multiband scattering, we qualitatively link the resultant confined wave functions with the contributions of the various scattering channels. On the basis of these results, we studied the coupling of two quantum corrals and the effect of the underlying warping toward the creation of artificial dimer states. This platform may provide a perspective toward the creation of correlated artificial lattices with nontrivial topology.

11.
Pediatr Pulmonol ; 57(5): 1325-1330, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35170262

RESUMO

ABCA3 is a phospholipid transporter protein required for surfactant assembly in lamellar bodies of alveolar type II cells. Biallelic pathogenic ABCA3 variants cause severe neonatal respiratory distress syndrome or childhood interstitial lung disease. However, ABCA3 genotype alone does not explain the diversity in disease presentation, severity, and progression. Additionally, monoallelic ABCA3 variants have been reported in infants and children with ABCA3-deficient phenotypes. The effects of most ABCA3 variants identified in patients have not been characterized at the RNA level. ABCA3 allele-specific expression occurs in some cell types due to epigenetic regulation. We obtained lung tissue at transplant or autopsy from 16 infants and children with ABCA3 deficiency due to compound heterozygous ABCA3 variants for biologic characterization of the predicted effects of ABCA3 variants at the RNA level and determination of ABCA3 allele expression. We extracted DNA and RNA from frozen lung tissue and reverse-transcribed cDNA from mRNA. We performed Sanger sequencing to assess allele-specific expression by comparing the heights of variant nucleotide peaks in amplicons from genomic DNA and cDNA. We found similar genomic and cDNA variant nucleotide peak heights and no evidence of allele-specific expression among explant or autopsy samples with biallelic missense ABCA3 variants (n = 6). We observed allele-specific expression of missense alleles in trans with frameshift (n = 4) or nonsense (n = 1) variants, attributable to nonsense-mediated decay. The missense variant c.53 A > G;p.Gln18Arg, located near an exon-intron junction, encoded abnormal splicing with skipping of exon 4. Biologic characterization of ABCA3 variants can inform discovery of variant-specific disease mechanisms.


Assuntos
Epigênese Genética , Síndrome do Desconforto Respiratório do Recém-Nascido , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Criança , DNA/metabolismo , DNA Complementar/metabolismo , Humanos , Recém-Nascido , Pulmão/patologia , Mutação , Nucleotídeos/metabolismo , RNA/metabolismo , Síndrome do Desconforto Respiratório do Recém-Nascido/metabolismo
12.
Appl Opt ; 60(22): F99-F108, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34612892

RESUMO

Algorithms used for mitigation of the effects of atmospheric turbulence on video sequences often rely on a process for creating a reference image to register all of the frames. Because such a pristine image is generally not available, no-reference image quality metrics can be used to identify frames in a sequence that have minimum distortion. Here, we propose a metric that quantifies image warping by measuring image straightness based on line detection. The average length of straight lines in a frame is used to select best frames in a sequence and to generate a reference frame for a subsequent dewarping algorithm. We perform tests with this metric on simulated data that exhibits varying degrees of distortion and blur and spans normalized turbulence strengths between 0.75 and 4.5. We show, through these simulations, that the metric can differentiate between weak and moderate turbulence effects. We also show in simulations that the optical flow that uses a reference frame generated by this metric produces consistently improved image quality. This improvement is even higher when we employ the metric to guide optical flow that is applied to three real video sequences taken over a 7 km path.

13.
JAMA Pediatr ; 175(12): 1218-1226, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34570182

RESUMO

Importance: Whole-genome sequencing (WGS) shows promise as a first-line genetic test for acutely ill infants, but widespread adoption and implementation requires evidence of an effect on clinical management. Objective: To determine the effect of WGS on clinical management in a racially and ethnically diverse and geographically distributed population of acutely ill infants in the US. Design, Setting, and Participants: This randomized, time-delayed clinical trial enrolled participants from September 11, 2017, to April 30, 2019, with an observation period extending to July 2, 2019. The study was conducted at 5 US academic medical centers and affiliated children's hospitals. Participants included infants aged between 0 and 120 days who were admitted to an intensive care unit with a suspected genetic disease. Data were analyzed from January 14 to August 20, 2020. Interventions: Patients were randomized to receive clinical WGS results 15 days (early) or 60 days (delayed) after enrollment, with the observation period extending to 90 days. Usual care was continued throughout the study. Main Outcomes and Measures: The main outcome was the difference in the proportion of infants in the early and delayed groups who received a change of management (COM) 60 days after enrollment. Additional outcome measures included WGS diagnostic efficacy, within-group COM at 90 days, length of hospital stay, and mortality. Results: A total of 354 infants were randomized to the early (n = 176) or delayed (n = 178) arms. The mean participant age was 15 days (IQR, 7-32 days); 201 participants (56.8%) were boys; 19 (5.4%) were Asian; 47 (13.3%) were Black; 250 (70.6%) were White; and 38 (10.7%) were of other race. At 60 days, twice as many infants in the early group vs the delayed group received a COM (34 of 161 [21.1%; 95% CI, 15.1%-28.2%] vs 17 of 165 [10.3%; 95% CI, 6.1%-16.0%]; P = .009; odds ratio, 2.3; 95% CI, 1.22-4.32) and a molecular diagnosis (55 of 176 [31.0%; 95% CI, 24.5%-38.7%] vs 27 of 178 [15.0%; 95% CI, 10.2%-21.3%]; P < .001). At 90 days, the delayed group showed a doubling of COM (to 45 of 161 [28.0%; 95% CI, 21.2%-35.6%]) and diagnostic efficacy (to 56 of 178 [31.0%; 95% CI, 24.7%-38.8%]). The most frequent COMs across the observation window were subspecialty referrals (39 of 354; 11%), surgery or other invasive procedures (17 of 354; 4%), condition-specific medications (9 of 354; 2%), or other supportive alterations in medication (12 of 354; 3%). No differences in length of stay or survival were observed. Conclusions and Relevance: In this randomized clinical trial, for acutely ill infants in an intensive care unit, introduction of WGS was associated with a significant increase in focused clinical management compared with usual care. Access to first-line WGS may reduce health care disparities by enabling diagnostic equity. These data support WGS adoption and implementation in this population. Trail Registration: ClinicalTrials.gov Identifier: NCT03290469.


Assuntos
Doença Aguda , Doenças Genéticas Inatas , Sequenciamento Completo do Genoma , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Avaliação de Resultados em Cuidados de Saúde
14.
Nano Lett ; 21(12): 5006-5012, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34061553

RESUMO

We demonstrate that nanocavity plasmons generated a few nanometers away from a molecule can induce molecular motion. For this, we study the well-known rapid shuttling motion of zinc phthalocyanine molecules adsorbed on ultrathin NaCl films by combining scanning tunneling microscopy (STM) and spectroscopy (STS) with STM-induced light emission. Comparing spatially resolved single-molecule luminescence spectra from molecules anchored to a step edge with isolated molecules adsorbed on the free surface, we found that the azimuthal modulation of the Lamb shift is diminished in case of the latter. This is evidence that the rapid shuttling motion is remotely induced by plasmon-molecule coupling. Plasmon-induced molecular motion may open an interesting playground to bridge the nanoscopic and mesoscopic worlds by combining molecular machines with nanoplasmonics to control directed motion of single molecules without the need for local probes.


Assuntos
Microscopia de Tunelamento , Nanotecnologia , Luminescência , Análise Espectral
15.
J Steroid Biochem Mol Biol ; 212: 105908, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33984517

RESUMO

Pathogenic biallelic variants in HSD17B3 result in 17ß-hydroxysteroid dehydrogenase 3 (17ß-HSD3) deficiency, variable disruption of testosterone production, and phenotypic diversity among 46, XY individuals with differences of sexual development (DSDs). We performed quad whole exome sequencing (WES) on two male siblings with microphallus, perineal hypospadias, and bifid scrotum and their unaffected parents. Both male siblings were compound heterozygous for a rare pathogenic HSD17B3 variant (c.239 G > A, p.R80Q) previously identified among individuals with 17ß-HSD3 deficiency and a HSD17B3 variant (c.641A > G, p.E214 G) of uncertain significance. Following WES, the siblings underwent hCG stimulation testing with measurement of testosterone, androstenedione, and dihydrotestosterone which was non-diagnostic. To confirm pathogenicity of the HSD17B3 variants, we performed transient transfection of HEK-293 cells and measured conversion of radiolabeled androstenedione to testosterone. Both HSD17B3 variants decreased conversion of radiolabeled androstenedione to testosterone. As pathogenic HSD17B3 variants are rare causes of 46, XY DSD and hCG stimulation testing may not be diagnostic for 17ß-HSD3 deficiency, WES in 46, XY individuals with DSDs can increase diagnostic yield and identify genomic variants for functional characterization of disruption of testosterone production.


Assuntos
17-Hidroxiesteroide Desidrogenases/genética , Transtorno 46,XY do Desenvolvimento Sexual/genética , Androstenodiona/metabolismo , Pré-Escolar , Transtorno 46,XY do Desenvolvimento Sexual/diagnóstico , Células HEK293 , Humanos , Masculino , Testosterona/metabolismo , Sequenciamento do Exoma
16.
Am J Med Genet A ; 185(7): 2190-2197, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33931933

RESUMO

Spinal muscular atrophy with congenital bone fractures 2 (SMABF2), a type of arthrogryposis multiplex congenita (AMC), is characterized by congenital joint contractures, prenatal fractures of long bones, and respiratory distress and results from biallelic variants in ASCC1. Here, we describe an infant with severe, diffuse hypotonia, congenital contractures, and pulmonary hypoplasia characteristic of SMABF2, with the unique features of cleft palate, small spleen, transverse liver, and pulmonary thromboemboli with chondroid appearance. This infant also had impaired coagulation with diffuse petechiae and ecchymoses which has only been reported in one other infant with AMC. Using trio whole genome sequencing, our proband was identified to have biallelic variants in ASCC1. Using deep next generation sequencing of parental cDNA, we characterized alteration of splicing encoded by the novel, maternally inherited ASCC1 variant (c.297-8 T > G) which provides a mechanism for functional pathogenicity. The paternally inherited ASCC1 variant is a rare nonsense variant (c.466C > T; p.Arg156*) that has been previously identified in one other infant with AMC. This report extends the phenotypic characteristics of ASCC1-associated AMC (SMABF2) and describes a novel intronic variant that partially disrupts RNA splicing.


Assuntos
Artrogripose/genética , Proteínas de Transporte/genética , Atrofia Muscular Espinal/genética , Artrogripose/diagnóstico por imagem , Artrogripose/fisiopatologia , Códon sem Sentido/genética , Feminino , Humanos , Recém-Nascido , Atrofia Muscular Espinal/diagnóstico por imagem , Atrofia Muscular Espinal/fisiopatologia , Sequenciamento Completo do Genoma
17.
Genet Med ; 23(6): 1075-1085, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33580225

RESUMO

PURPOSE: Genomic sequencing has become an increasingly powerful and relevant tool to be leveraged for the discovery of genetic aberrations underlying rare, Mendelian conditions. Although the computational tools incorporated into diagnostic workflows for this task are continually evolving and improving, we nevertheless sought to investigate commonalities across sequencing processing workflows to reveal consensus and standard practice tools and highlight exploratory analyses where technical and theoretical method improvements would be most impactful. METHODS: We collected details regarding the computational approaches used by a genetic testing laboratory and 11 clinical research sites in the United States participating in the Undiagnosed Diseases Network via meetings with bioinformaticians, online survey forms, and analyses of internal protocols. RESULTS: We found that tools for processing genomic sequencing data can be grouped into four distinct categories. Whereas well-established practices exist for initial variant calling and quality control steps, there is substantial divergence across sites in later stages for variant prioritization and multimodal data integration, demonstrating a diversity of approaches for solving the most mysterious undiagnosed cases. CONCLUSION: The largest differences across diagnostic workflows suggest that advances in structural variant detection, noncoding variant interpretation, and integration of additional biomedical data may be especially promising for solving chronically undiagnosed cases.


Assuntos
Genômica , Doenças não Diagnosticadas , Biologia Computacional , Testes Genéticos , Genoma , Humanos , Software , Fluxo de Trabalho
18.
J Hum Genet ; 66(7): 717-724, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33517344

RESUMO

HCFC1, a global transcriptional regulator, has been shown to associate with MMACHC expression. Pathogenic variants in HCFC1 cause X-linked combined methylmalonic acidemia and hyperhomocysteinemia, CblX type (MIM# 309541). Recent studies showed that certain variants in HCFC1 are associated with X-linked intellectual disability with mild or absent metabolic abnormalities. Here, we report five subjects (three males, two females) from the same family with a novel predicted loss of function HCFC1 variant. All five patients exhibit developmental delay or intellectual disability/learning difficulty and some dysmorphic features; findings were milder in the female as compared to male subjects. Biochemical studies in all patients did not show methylmalonic acidemia or hyperhomocysteinemia but revealed elevated vitamin B12 levels. Trio exome sequencing of the proband and his parents revealed a maternally inherited novel variant in HCFC1 designated as c.1781_1803 + 3del26insCA (NM_005334). Targeted testing confirmed the presence of the same variant in two half-siblings and maternal great uncle. In silico analysis showed that the variant is expected to reduce the quality of the splice donor site in intron 10 and causes abnormal splicing. Sequencing of proband's cDNA revealed exon 10 skipping. Further molecular studies in the two manifesting females revealed moderate and high skewing of X inactivation. Our results support previous observation that HCFC1 variants located outside the Kelch domain exhibit dissociation of the clinical and biochemical phenotype and cause milder or no metabolic changes. We also show that this novel variant can be associated with a phenotype in females, although with milder severity, but further studies are needed to understand the role of skewed X inactivation among females in this rare disorder. Our work expands the genotypes and phenotypes associated with HCFC1-related disorder.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/genética , Predisposição Genética para Doença , Fator C1 de Célula Hospedeira/genética , Inativação do Cromossomo X/genética , Adulto , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Criança , Pré-Escolar , Éxons/genética , Feminino , Regulação da Expressão Gênica/genética , Estudos de Associação Genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Doenças Genéticas Ligadas ao Cromossomo X/patologia , Humanos , Lactente , Deficiência Intelectual/complicações , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Íntrons/genética , Masculino , Herança Materna/genética , Pessoa de Meia-Idade , Mutação/genética , Linhagem , Fenótipo , Sítios de Splice de RNA/genética , Splicing de RNA/genética , Vitamina B 12/genética , Sequenciamento do Exoma
19.
Am J Med Genet A ; 185(2): 544-548, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33184947

RESUMO

Chromodomain helicase DNA-binding protein 7 (CHD7) pathogenic variants are identified in more than 90% of infants and children with CHARGE (Coloboma of the iris, retina, and/or optic disk; congenital Heart defects, choanal Atresia, Retardation of growth and development, Genital hypoplasia, and characteristic outer and inner Ear anomalies and deafness) syndrome. Approximately, 10% of cases have no known genetic cause identified. We report a male child with clinical features of CHARGE syndrome and nondiagnostic genetic testing that included chromosomal microarray, CHD7 sequencing and deletion/duplication analysis, SEMA3E sequencing, and trio exome and whole-genome sequencing (WGS). We used a comprehensive clinical assessment, genome-wide methylation analysis (GMA), reanalysis of WGS data, and CHD7 RNA studies to discover a novel variant that causes CHD7 haploinsufficiency. The 7-year-old Hispanic male proband has typical phenotypic features of CHARGE syndrome. GMA revealed a CHD7-associated epigenetic signature. Reanalysis of the WGS data with focused bioinformatic analysis of CHD7 detected a novel, de novo 15 base pair deletion in Intron 4 of CHD7 (c.2239-20_2239-6delGTCTTGGGTTTTTGT [NM_017780.3]). Using proband RNA, we confirmed that this novel deletion causes CHD7 haploinsufficiency by disrupting the canonical 3' splice site and introducing a premature stop codon. Integrated genomic, epigenomic, and transcriptome analyses discovered a novel CHD7 variant that causes CHARGE syndrome.


Assuntos
Síndrome CHARGE/genética , Atresia das Cóanas/genética , Coloboma/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Cardiopatias Congênitas/genética , Síndrome CHARGE/complicações , Síndrome CHARGE/patologia , Criança , Pré-Escolar , Atresia das Cóanas/complicações , Atresia das Cóanas/patologia , Coloboma/complicações , Coloboma/patologia , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/patologia , Humanos , Lactente , Íntrons/genética , Masculino , Mutação/genética , Fenótipo , Sequenciamento do Exoma
20.
J Endocr Soc ; 4(12): bvaa138, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33210059

RESUMO

Insulin-mediated pseudoacromegaly (IMPA) is a rare disease of unknown etiology. Here we report a 12-year-old female with acanthosis nigricans, hirsutism, and acromegalic features characteristic of IMPA. The subject was noted to have normal growth hormone secretion, with extremely elevated insulin levels. Studies were undertaken to determine a potential genetic etiology for IMPA. The proband and her family members underwent whole exome sequencing. Functional studies were undertaken to validate the pathogenicity of candidate variant alleles. Whole exome sequencing identified monoallelic, predicted deleterious variants in genes that mediate fibroblast growth factor 21 (FGF21) signaling, FGFR1 and KLB, which were inherited in trans from each parent. FGF21 has multiple metabolic functions but no known role in human insulin resistance syndromes. Analysis of the function of the FGFR1 and KLB variants in vitro showed greatly attenuated ERK phosphorylation in response to FGF21, but not FGF2, suggesting that these variants act synergistically to inhibit endocrine FGF21 signaling but not canonical FGF2 signaling. Therefore, digenic variants in FGFR1 and KLB provide a potential explanation for the subject's severe insulin resistance and may represent a novel category of insulin resistance syndromes related to FGF21.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...