Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Dev Comp Immunol ; 159: 105221, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38925430

RESUMO

Infections with pathogenic Vibrio strains are associated with high summer mortalities of Pacific oysters Magalana (Crassostrea) gigas, affecting production worldwide. This raises the question of how M. gigas cultures can be protected against deadly Vibro infection. There is increasing experimental evidence of immune priming in invertebrates, where previous exposure to a low pathogen load boosts the immune response upon secondary exposure. Priming responses, however, appear to vary in their specificity across host and parasite taxa. To test priming specificity in the Vibrio - M. gigas system, we used two closely related Vibrio splendidus strains with differing degrees of virulence towards M. gigas. These V. splendidus strains were either isolated in the same location as the oysters (sympatric, opening up the potential for co-evolution) or in a different location (allopatric). We extracted cell-free haemolymph plasma from infected and control oysters to test the influence of humoral immune effectors on bacterial growth in vitro. While addition of haemolypmph plasma in general promoted growth of both strains, priming by an exposure to a sublethal dose of bacterial cells lead to inhibitory effects against a subsequent challenge with a potentially lethal dose in vitro. Inhibitory effects and immune priming was strongest when oysters had been primed with the sympatric Vibrio strain, but inhibitory effects were seen both when challenged with the sympatric as well as against allopatric V. splendidus, suggesting some degree of cross protection. The stronger immune priming against the sympatric strain suggests that priming could be more efficient against matching local strains potentially adding a component of local adaptation or co-evolution to immune priming in oysters. These in vitro results, however, were not reflected in the in vivo infection data, where we saw increased bacterial loads following an initial challenge. This discrepancy might suggests that that it is the humoral part of the oyster immune system that produces the priming effects seen in our in vitro experiments.


Assuntos
Crassostrea , Proteção Cruzada , Vibrioses , Vibrio , Animais , Vibrio/imunologia , Crassostrea/imunologia , Crassostrea/microbiologia , Vibrioses/imunologia , Proteção Cruzada/imunologia , Hemolinfa/imunologia , Hemolinfa/microbiologia , Imunidade Humoral , Interações Hospedeiro-Patógeno/imunologia , Virulência
2.
Ecol Evol ; 14(6): e11485, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38932946

RESUMO

Climate change may exacerbate the impact of invasive parasites from warmer climates through pre-existing temperature adaptations. We investigated temperature impacts on two closely related marine parasitic copepod species that share the blue mussel (Mytilus edulis) as host: Mytilicola orientalis has invaded the system from a warmer climate <20 years ago, whereas its established congener Mytilicola intestinalis has had >90 years to adapt. In laboratory experiments with temperatures 10-26°C, covering current and future temperatures as well as heat waves, the development of both life cycle stages of both species accelerated with increasing temperature. In the parasitic stages, the growth of the established invader increased evenly from 10°C to 22°C, whereas the recent invader barely grew at all at 10°C and grew faster already at 18°C. In contrast, temperature had little effect on the transition success between life cycle stages. However, the highest temperature (26°C) limited the egg development success of the established invader and the host entry success of both species, whereas the infection success of the established invader increased at 18°C and 22°C. In general, our experiments indicate that the main effect of temperature on both species is through development speed and not life cycle stage transition success. Based on regional long-term temperature data and predictions, the numbers of completed life cycles per year will increase for both parasites. The established invader seems better adapted for low current temperatures (around 10°C), whereas the more recent invader barely develops at these temperatures but can cope in high temperatures (around 26°C). Hence, pre-existing temperature adaptations of the recent invader may allow the species to better cope with heat waves.

3.
Sci Rep ; 14(1): 11904, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789603

RESUMO

Luminophore stained micro- and nanobeads made from organic polymers like polystyrene (PS) are broadly used in the life and material sciences as luminescent reporters, for bead-based assays, sensor arrays, printable barcodes, security inks, and the calibration of fluorescence microscopes and flow cytometers. Initially mostly prepared with organic dyes, meanwhile luminescent core/shell nanoparticles (NPs) like spherical semiconductor quantum dots (QDs) are increasingly employed for bead encoding. This is related to their narrower emission spectra, tuneability of emission color, broad wavelength excitability, and better photostability. However, correlations between particle architecture, morphology, and photoluminescence (PL) of the luminescent nanocrystals used for encoding and the optical properties of the NP-stained beads have been rarely explored. This encouraged us to perform a screening study on the incorporation of different types of luminescent core/shell semiconductor nanocrystals into polymer microparticles (PMPs) by a radical-induced polymerization reaction. Nanocrystals explored include CdSe/CdS QDs of varying CdS shell thickness, a CdSe/ZnS core/shell QD, CdSe/CdS quantum rods (QRs), and CdSe/CdS nanoplatelets (NPLs). Thereby, we focused on the applicability of these NPs for the polymerization synthesis approach used and quantified the preservation of the initial NP luminescence. The spectroscopic characterization of the resulting PMPs revealed the successful staining of the PMPs with luminescent CdSe/CdS QDs and CdSe/CdS NPLs. In contrast, usage of CdSe/CdS QRs and CdSe QDs with a ZnS shell did not yield luminescent PMPs. The results of this study provide new insights into structure-property relationships between NP stained PMPs and the initial luminescent NPs applied for staining and underline the importance of such studies for the performance optimization of NP-stained beads.

4.
Anal Bioanal Chem ; 416(14): 3283-3293, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38478110

RESUMO

The 2023 Nobel Prize in Chemistry was awarded to Aleksey I. Ekimov (prize share 1/3), Louis E. Brus (prize share 1/3), and Moungi G. Bawendi (prize share 1/3) for groundbreaking inventions in the field of nanotechnology, i.e., for the discovery and synthesis of semiconductor nanocrystals, also termed quantum dots, that exhibit size-dependent physicochemical properties enabled by quantum size effects. This feature article summarizes the main milestones of the discoveries and developments of quantum dots that paved the road to their versatile applications in solid-state lighting, display technology, energy conversion, medical diagnostics, bioimaging, and image-guided surgery.

5.
Anal Chem ; 96(13): 5078-5085, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38498677

RESUMO

Heterogeneous sandwich immunoassays are widely used for biomarker detection in bioanalysis and medical diagnostics. The high analyte sensitivity of the current "gold standard" enzyme-linked immunosorbent assay (ELISA) originates from the signal-generating enzymatic amplification step, yielding a high number of optically detectable reporter molecules. For future point-of-care testing (POCT) and point-of-need applications, there is an increasing interest in more simple detection strategies that circumvent time-consuming and temperature-dependent enzymatic reactions. A common concept to aim for detection limits comparable to those of enzymatic amplification reactions is the usage of polymer nanoparticles (NP) stained with a large number of chromophores. We explored different simple NP-based signal amplification strategies for heterogeneous sandwich immunoassays that rely on an extraction-triggered release step of different types of optically detectable reporters. Therefore, streptavidin-functionalized polystyrene particles (PSP) are utilized as carriers for (i) the fluorescent dye coumarin 153 (C153) and (ii) hemin (hem) molecules catalyzing the luminol reaction enabling chemiluminescence (CL) detection. Additionally, (iii) NP labeling with hemin-based microperoxidase MP11 was assessed. For each amplification approach, the PSP was first systematically optimized regarding size, loading concentration, and surface chemistry. Then, for an immunoassay for the inflammation marker C-reactive protein (CRP), the analyte sensitivity achievable with optimized PSP systems was compared with the established ELISA concept for photometric and CL detection. Careful optimization led to a limit of detection (LOD) of 0.1 ng/mL for MP11-labeled PSP and CL detection, performing similarly well to a photometric ELISA (0.13 ng/mL), which demonstrates the huge potential of our novel assay concept.


Assuntos
Hemina , Nanopartículas , Imunoensaio , Ensaio de Imunoadsorção Enzimática , Nanopartículas/química , Biomarcadores
6.
J Med Chem ; 67(5): 3679-3691, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38393818

RESUMO

The development of new fluorescent organic probes effective in the NIR-II region is currently a fast-growing field and represents a challenge in the domain of medical imaging. In this study, we have designed and synthesized an innovative series of aza-boron dipyrromethenes emitting in the NIR-II region. We have investigated the effect of different water-solubilizing groups not only on the photophysical properties of the compounds but also on their in vitro and in vivo performance after bioconjugation to the antibody trastuzumab. Remarkably, we discovered that the most lipophilic compound unexpectedly displayed the most favorable in vivo properties after bioconjugation. This underlines the profound influence that the fluorophore functionalization approach can have on the efficiency of the resulting imaging agent.


Assuntos
Imunoconjugados , Água , Trastuzumab , Compostos de Boro , Corantes Fluorescentes
7.
Gene ; 893: 147895, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37832807

RESUMO

Many gene families are shared across the tree of life between distantly related species because of horizontal gene transfers (HGTs). However, the frequency of HGTs varies strongly between gene families and biotic realms suggesting differential selection pressures and functional bias. One gene family with a wide distribution are FIC-domain containing enzymes (FicDs). FicDs catalyze AMPylation, a post-translational protein modification consisting in the addition of adenosine monophosphate to accessible residues of target proteins. Beside the well-known conservation of FicDs in deuterostomes, we report the presence of a conserved FicD gene ortholog in a large number of protostomes and microbial eukaryotes. We also reported additional FicD gene copies in the genomes of some rotifers, parasitic worms and bivalves. A few dsDNA viruses of these invertebrates, including White spot syndrome virus, Cherax quadricarinatus iridovirus, Ostreid herpesvirus-1 and the beetle nudivirus, carry copies of FicDs, with phylogenetic analysis suggesting a common origin of these FicD copies and the duplicated FicDs of their invertebrate hosts. HGTs and gene duplications possibly mediated by endogenous viruses or genetic mobile elements seem to have contributed to the transfer of AMPylation ability from bacteria and eukaryotes to pathogenic viruses, where this pathway could have been hijacked to promote viral infection.


Assuntos
Invertebrados , Viroses , Animais , Filogenia , Invertebrados/genética , Processamento de Proteína Pós-Traducional , Bactérias
8.
Environ Microbiol ; 25(8): 1424-1438, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36876921

RESUMO

Phages depend on their bacterial hosts to replicate. The habitat, density and genetic diversity of host populations are therefore key factors in phage ecology, but our ability to explore their biology depends on the isolation of a diverse and representative collection of phages from different sources. Here, we compared two populations of marine bacterial hosts and their phages collected during a time series sampling program in an oyster farm. The population of Vibrio crassostreae, a species associated specifically to oysters, was genetically structured into clades of near clonal strains, leading to the isolation of closely related phages forming large modules in phage-bacterial infection networks. For Vibrio chagasii, which blooms in the water column, a lower number of closely related hosts and a higher diversity of isolated phages resulted in small modules in the phage-bacterial infection network. Over time, phage load was correlated with V. chagasii abundance, indicating a role of host blooms in driving phage abundance. Genetic experiments further demonstrated that these phage blooms can generate epigenetic and genetic variability that can counteract host defence systems. These results highlight the importance of considering both the environmental dynamics and the genetic structure of the host when interpreting phage-bacteria networks.


Assuntos
Bacteriófagos , Vibrio , Vibrio/genética , Ecossistema , Estruturas Genéticas
9.
J Anim Ecol ; 92(5): 991-1000, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36994669

RESUMO

Predators can affect parasite-host interactions when directly preying on hosts or their parasites. However, predators may also have non-consumptive indirect effects on parasite-host interactions when hosts adjust their behaviour or physiology in response to predator presence. In this study, we examined how chemical cues from a predatory marine crab affect the transmission of a parasitic trematode from its first (periwinkle) to its second (mussel) intermediate host. Laboratory experiments revealed that chemical cues from crabs lead to a threefold increase in the release of trematode cercariae from periwinkles as a result of increased periwinkle activity. This positive effect on transmission was contrasted by a 10-fold reduction in cercarial infection rates in the second intermediate host when we experimentally exposed mussels to cercariae and predator cues. The low infection rates were caused by a substantial reduction in mussel filtration activity in the presence of predator cues, preventing cercariae from entering the mussels. To assess the combined net effect of both processes, we conducted a transmission experiment between infected periwinkles and uninfected mussels. Infection levels of mussels in the treatments with crab cues were sevenfold lower than in mussels without crab chemical cues. This suggests that predation risk effects on mussel susceptibility can counteract the elevated parasite release from first intermediate hosts, with negative net effects on parasite transmission. These experiments highlight that predation risk effects on parasite transmission can have opposing directions at different stages of the parasite's life cycle. Such complex non-consumptive predation risk effects on parasite transmission may constitute an important indirect mechanism affecting prevalence and distribution patterns of parasites in different hosts across their life cycle.


Assuntos
Braquiúros , Parasitos , Trematódeos , Animais , Comportamento Predatório/fisiologia , Interações Hospedeiro-Parasita , Trematódeos/fisiologia
10.
J Med Chem ; 66(7): 5185-5195, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-36996803

RESUMO

Using fluorescence-guided surgery (FGS) to cytoreductive surgery helps achieving complete resection of microscopic ovarian tumors. The use of visible and NIR-I fluorophores has led to beneficial results in clinical trials; however, involving NIR-II dyes seems to outperform those benefits due to the deeper tissue imaging and higher signal/noise ratio attained within the NIR-II optical window. In this context, we developed NIR-II emitting dyes targeting human epidermal growth factor receptor 2 (HER2)-positive ovarian tumors by coupling water-soluble NIR-II aza-BODIPY dyes to the FDA-approved anti-HER2 antibody, namely, trastuzumab. These bioconjugated NIR-II-emitting dyes displayed a prolonged stability in serum and a maintained affinity toward HER2 in vitro. We obtained selective targeting of HER2 positive tumors (SKOV-3) in vivo, with a favorable tumor accumulation. We demonstrated the fluorescence properties and the specific HER2 binding of the bioconjugated dyes in vivo and thus their potential for NIR-II FGS in the cancer setting.


Assuntos
Anticorpos Monoclonais , Neoplasias Ovarianas , Feminino , Humanos , Trastuzumab/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Corantes Fluorescentes
11.
Sci Rep ; 12(1): 22000, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36539585

RESUMO

Luminescent semiconductor quantum dots (QDs) are frequently used in the life and material sciences as reporter for bioimaging studies and as active components in devices such as displays, light-emitting diodes, solar cells, and sensors. Increasing concerns regarding the use of toxic elements like cadmium and lead, and hazardous organic solvents during QD synthesis have meanwhile triggered the search for heavy-metal free QDs using green chemistry syntheses methods. Interesting candidates are ternary AgInS2 (AIS) QDs that exhibit broad photoluminescence (PL) bands, large effective Stokes shifts, high PL quantum yields (PL QYs), and long PL lifetimes, which are particularly beneficial for applications such as bioimaging, white light-emitting diodes, and solar concentrators. In addition, these nanomaterials can be prepared in high quality with a microwave-assisted (MW) synthesis in aqueous solution. The homogeneous heat diffusion and instant temperature rise of the MW synthesis enables a better control of QD nucleation and growth and thus increases the batch-to-batch reproducibility. In this study, we systematically explored the MW synthesis of AIS/ZnS QDs by varying parameters such as the order of reagent addition, precursor concentration, and type of stabilizing thiol ligand, and assessed their influence on the optical properties of the resulting AIS/ZnS QDs. Under optimized synthesis conditions, water-soluble AIS/ZnS QDs with a PL QY of 65% and excellent colloidal and long-term stability could be reproducible prepared.


Assuntos
Pontos Quânticos , Pontos Quânticos/química , Ligantes , Micro-Ondas , Reprodutibilidade dos Testes , Água/química
12.
Nat Microbiol ; 7(7): 1075-1086, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35760840

RESUMO

Coevolution between bacteriophages (phages) and their bacterial hosts occurs through changes in resistance and counter-resistance mechanisms. To assess phage-host evolution in wild populations, we isolated 195 Vibrio crassostreae strains and 243 vibriophages during a 5-month time series from an oyster farm and combined these isolates with existing V. crassostreae and phage isolates. Cross-infection studies of 81,926 host-phage pairs delineated a modular network where phages are best at infecting co-occurring hosts, indicating local adaptation. Successful propagation of phage is restricted by the ability to adsorb to closely related bacteria and further constrained by strain-specific defence systems. These defences are highly diverse and predominantly located on mobile genetic elements, and multiple defences are active within a single genome. We further show that epigenetic and genomic modifications enable phage to adapt to bacterial defences and alter host range. Our findings reveal that the evolution of bacterial defences and phage counter-defences is underpinned by frequent genetic exchanges with, and between, mobile genetic elements.


Assuntos
Bacteriófagos , Bacteriófagos/genética , Especificidade de Hospedeiro
13.
Chemistry ; 28(39): e202200570, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35703399

RESUMO

Atomically precise gold nanoclusters are a fascinating class of nanomaterials that exhibit molecule-like properties and have outstanding photoluminescence (PL). Their ultrasmall size, molecular chemistry, and biocompatibility make them extremely appealing for selective biomolecule labeling in investigations of biological mechanisms at the cellular and anatomical levels. In this work, we report a simple route to incorporate a preformed Au25 nanocluster into a model bovine serum albumin (BSA) protein. A new approach combining small-angle X-ray scattering and molecular modeling provides a clear localization of a single Au25 within the protein to a cysteine residue on the gold nanocluster surface. Attaching Au25 to BSA strikingly modifies the PL properties with enhancement and a redshift in the second near-infrared (NIR-II) window. This study paves the way to conrol the design of selective sensitive probes in biomolecules through a ligand-based strategy to enable the optical detection of biomolecules in a cellular environment by live imaging.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Ouro/química , Ligantes , Nanopartículas Metálicas/química , Soroalbumina Bovina/química
14.
Inorg Chem ; 61(19): 7207-7211, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35512713

RESUMO

The synthesis of two new families of ZnSe magic-sized clusters (MSCs) is achieved using the thiol ligand 1-dodecanethiol in a simple one-pot heat-up approach. The sizes of the MSCs are controlled with the thiol ligand concentration and reaction temperature.

15.
Anal Bioanal Chem ; 414(15): 4427-4439, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35303136

RESUMO

Light-emitting nanoparticles like semiconductor nanocrystals (termed quantum dots, QDs) are promising candidates for biosensing and bioimaging applications based on their bright and stable photoluminescent properties. As high-quality QDs are often synthesized in organic solvents, strategies needed to be developed to render them water-dispersible without affecting their optical properties and prevent changes in postmodification steps like the biofunctionalization with antibodies or DNA. Despite a large number of studies on suitable surface modification procedures, the preparation of water-soluble QDs for nanobiotechnology applications still presents a challenge. To highlight the advantages of surface silanization, we systematically explored the influence of the core/multishell architecture of CdSe/CdS/ZnS QDs and the silanization conditions on the optical properties of the resulting silanized QDs. Our results show that the optical properties of silica-coated CdSe/CdS/ZnS QDs are best preserved in the presence of a thick CdS (6 monolayers (ML)) intermediate shell, providing a high photoluminescence quantum yield (PL QY), and a relatively thick ZnS (4.5 ML) external shell, effectively shielding the QDs from the chemical changes during silica coating. In addition to the QD core/shell architecture, other critical parameters of the silica-coating process, that can have an influence on the optical properties of the QD, include the choice of the surfactant and its concentration used for silica coating. The highest PL QY of about 46% was obtained by a microemulsion silica-coating procedure with the surfactant Brij L4, making these water-dispersible QDs to well-suited optical reporters in future applications like fluorescence immunoassays, biomedicine, and bioimaging.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Compostos de Selênio , Compostos de Cádmio/química , Pontos Quânticos/química , Compostos de Selênio/química , Dióxido de Silício/química , Sulfetos/química , Tensoativos , Água/química , Compostos de Zinco/química
16.
ChemTexts ; 8(1): 9, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35223376

RESUMO

Most studies about the interaction of nanoparticles (NPs) with cells have focused on how the physicochemical properties of NPs will influence their uptake by cells. However, much less is known about their potential excretion from cells. However, to control and manipulate the number of NPs in a cell, both cellular uptake and excretion must be studied quantitatively. Monitoring the intracellular and extracellular amount of NPs over time (after residual noninternalized NPs have been removed) enables one to disentangle the influences of cell proliferation and exocytosis, the major pathways for the reduction of NPs per cell. Proliferation depends on the type of cells, while exocytosis depends in addition on properties of the NPs, such as their size. Examples are given herein on the role of these two different processes for different cells and NPs.

17.
Chem Commun (Camb) ; 58(18): 2967-2970, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35137744

RESUMO

The influence of solvent polarity and surface ligand rigidification on the SWIR emission profile of gold nanoclusters with an anistropic surface was investigated. A strong enhancement of the SWIR emission band at 1200 nm was observed when measuring in different local environments: in solution, in polymer composites, and in solids. SWIR in vivo imaging of mice assisted by deep learning after intravenous administration of these gold nanoclusters provides high definition pseudo-3D views of vascular blood vessels.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Imagem Molecular/métodos , Animais , Ligantes , Camundongos , Espectrofotometria Infravermelho/métodos , Propriedades de Superfície
18.
Curr Opin Biotechnol ; 73: 225-232, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34571318

RESUMO

In bivalves, no clear-cut functional role of microbiota has yet been identified, although many publications suggest that they could be involved in nutrition or immunity of their host. In the context of climate change, integrative approaches at the crossroads of disciplines have been developed to explore the environment-host-pathogen-microbiota system. Here, we attempt to synthesize work on (1) the current methodologies to analyse bivalve microbiota, (2) the comparison of microbiota between species, between host compartments and their surrounding habitat, (3) how the bivalve microbiota are governed by environmental factors and host genetics and (4) how host-associated microorganisms act as a buffer against pathogens and/or promote recovery, and could thereby play a role in the prevention of disease or mortalities.


Assuntos
Bivalves , Microbiota , Animais , Aquicultura , Interações Hospedeiro-Patógeno
19.
Glob Chang Biol ; 28(1): 54-71, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34669228

RESUMO

Rapid climate change is placing many marine species at risk of local extinction. Recent studies show that epigenetic mechanisms (e.g. DNA methylation, histone modifications) can facilitate both within and transgenerational plasticity to cope with changing environments. However, epigenetic reprogramming (erasure and re-establishment of epigenetic marks) during gamete and early embryo development may hinder transgenerational epigenetic inheritance. Most of our knowledge about reprogramming stems from mammals and model organisms, whereas the prevalence and extent of reprogramming among non-model species from wild populations is rarely investigated. Moreover, whether reprogramming dynamics are sensitive to changing environmental conditions is not well known, representing a key knowledge gap in the pursuit to identify mechanisms underlying links between parental exposure to changing climate patterns and environmentally adapted offspring phenotypes. Here, we investigated epigenetic reprogramming (DNA methylation/hydroxymethylation) and gene expression across gametogenesis and embryogenesis of marine stickleback (Gasterosteus aculeatus) under three ocean warming scenarios (ambient, +1.5 and +4°C). We found that parental acclimation to ocean warming led to dynamic and temperature-sensitive reprogramming throughout offspring development. Both global methylation/hydroxymethylation and expression of genes involved in epigenetic modifications were strongly and differentially affected by the increased warming scenarios. Comparing transcriptomic profiles from gonads, mature gametes and early embryonic stages showed sex-specific accumulation and temperature sensitivity of several epigenetic actors. DNA methyltransferase induction was primarily maternally inherited (suggesting maternal control of remethylation), whereas induction of several histone-modifying enzymes was shaped by both parents. Importantly, massive, temperature-specific changes to the epigenetic landscape occurred in blastula, a critical stage for successful embryo development, which could, thus, translate to substantial consequences for offspring phenotype resilience in warming environments. In summary, our study identified key stages during gamete and embryo development with temperature-sensitive reprogramming and epigenetic gene regulation, reflecting potential 'windows of opportunity' for adaptive epigenetic responses under future climate change.


Assuntos
Smegmamorpha , Animais , Desenvolvimento Embrionário/genética , Epigênese Genética , Feminino , Gametogênese/genética , Expressão Gênica , Masculino , Oceanos e Mares , Smegmamorpha/genética , Temperatura
20.
Viruses ; 13(10)2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34696401

RESUMO

The highly versatile group of Herpesviruses cause disease in a wide range of hosts. In invertebrates, only two herpesviruses are known: the malacoherpesviruses HaHV-1 and OsHV-1 infecting gastropods and bivalves, respectively. To understand viral transcript architecture and diversity we first reconstructed full-length viral genomes of HaHV-1 infecting Haliotis diversicolor supertexta and OsHV-1 infecting Scapharca broughtonii by DNA-seq. We then used RNA-seq over the time-course of experimental infections to establish viral transcriptional dynamics, followed by PacBio long-read sequencing of full-length transcripts to untangle viral transcript architectures at two selected time points. Despite similarities in genome structure, in the number of genes and in the diverse transcriptomic architectures, we measured a ten-fold higher transcript variability in HaHV-1, with more extended antisense gene transcription. Transcriptional dynamics also appeared different, both in timing and expression trends. Both viruses were heavily affected by post-transcriptional modifications performed by ADAR1 affecting sense-antisense gene pairs forming dsRNAs. However, OsHV-1 concentrated these modifications in a few genomic hotspots, whereas HaHV-1 diluted ADAR1 impact by elongated and polycistronic transcripts distributed over its whole genome. These transcriptional strategies might thus provide alternative potential roles for sense-antisense transcription in viral transcriptomes to evade the host's immune response in different virus-host combinations.


Assuntos
Infecções por Herpesviridae/genética , Herpesviridae/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Vírus de DNA/genética , Gastrópodes/virologia , Genoma Viral/genética , Herpesviridae/metabolismo , Herpesviridae/patogenicidade , Infecções por Herpesviridae/metabolismo , Invertebrados/virologia , Processamento Pós-Transcricional do RNA/genética , Processamento Pós-Transcricional do RNA/fisiologia , RNA-Seq/métodos , Scapharca/virologia , Análise de Sequência de DNA/métodos , Transcriptoma/genética , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...