Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 1569: 187-202, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28265999

RESUMO

Genome sequencing and annotation studies clearly highlight the impact of transcriptional regulation in plants. However, functional characterization of the majority of transcriptional regulators remains elusive. Hence, high-throughput techniques are required to facilitate their molecular analysis. Here, we provide a detailed protocol to conduct a high-throughput protoplast trans-activation (PTA) screening, which enables simultaneous analysis of up to 95 individual transcription factor activities on a customizable promoter:LUCIFERASE reporter. This system is well suited to decipher complex transcriptional networks such as that triggered by the phytohormone auxin.


Assuntos
Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ensaios de Triagem em Larga Escala , Ácidos Indolacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Protoplastos/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fracionamento Celular , Expressão Gênica , Genes Reporter , Vetores Genéticos/genética , Transfecção/métodos
2.
PLoS Pathog ; 11(1): e1004620, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25615824

RESUMO

Virulent Agrobacterium tumefaciens strains integrate their T-DNA into the plant genome where the encoded agrobacterial oncogenes are expressed and cause crown gall disease. Essential for crown gall development are IaaH (indole-3-acetamide hydrolase), IaaM (tryptophan monooxygenase) and Ipt (isopentenyl transferase), which encode enzymes for the biosynthesis of auxin (IaaH, IaaM) and cytokinin (Ipt). Although these oncogenes are well studied as the tumor-inducing principle, nothing is known about the regulation of oncogene expression in plant cells. Our studies show that the intergenic regions (IGRs) between the coding sequences (CDS) of the three oncogenes function as promoters in plant cells. These promoters possess a eukaryotic sequence organization and cis-regulatory elements for the binding of plant transcription factors. WRKY18, WRKY40, WRKY60 and ARF5 were identified as activators of the Ipt promoter whereas IaaH and IaaM is constitutively expressed and no transcription factor further activates their promoters. Consistent with these results, the wrky triple mutant plants in particular, develops smaller crown galls than wild-type and exhibits a reduced Ipt transcription, despite the presence of an intact ARF5 gene. WRKY40 and WRKY60 gene expression is induced by A. tumefaciens within a few hours whereas the ARF5 gene is transcribed later during crown gall development. The WRKY proteins interact with ARF5 in the plant nucleus, but only WRKY40 together with ARF5 synergistically boosts the activation of the Ipt promoter in an auxin-dependent manner. From our data, we propose that A. tumefaciens initially induces WRKY40 gene expression as a pathogen defense response of the host cell. The WRKY protein is recruited to induce Ipt expression, which initiates cytokinin-dependent host cell division. With increasing auxin levels triggered by ubiquitous expression of IaaH and IaaM, ARF5 is activated and interacts with WRKY40 to potentiate Ipt expression and balance cytokinin and auxin levels for further cell proliferation.


Assuntos
Agrobacterium tumefaciens/genética , Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas Oncogênicas/genética , Oncogenes/genética , Transformação Genética , Sequência de Bases , Linhagem Celular Transformada , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/genética , Dados de Sequência Molecular , Plantas Geneticamente Modificadas
3.
Plant J ; 68(3): 560-9, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21749507

RESUMO

Genomic approaches have generated large Arabidopsis open reading frame (ORF) collections. However, molecular tools are required to characterize this ORFeome functionally. A high-throughput microtiter plate-based protoplast transactivation (PTA) system has been established that can be used in a screening approach to define which transcription factor (TF) regulates a given promoter in planta. Using to this procedure, the transactivation properties of 96 TFs can be analyzed rapidly, making use of promoter:Luciferase (LUC)-reporters and luciferase imaging. Applying GATEWAY® technology, we have established a platform to assay more than 700 Arabidopsis TFs. As a proof-of-principle, the ethylene response factor (ERF) family has been studied to evaluate this system. Importantly, distinct subsets of related ERF factors were found to activate specifically the well described target promoters RD29A and PDF1.2 that are under control of DRE or GCC box cis-elements, respectively. Furthermore, several applications of the PTA system have been demonstrated, such as analysis of transcriptional repressors, salt-inducible gene expression or functional interaction of signaling molecules like kinases and TFs. This novel molecular tool will improve functional studies on transcriptional regulation in plants significantly.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo , Ativação Transcricional , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , DNA de Plantas/genética , Vetores Genéticos , Regiões Promotoras Genéticas , Protoplastos/metabolismo , Fatores de Transcrição/genética , Transfecção/métodos
4.
Front Plant Sci ; 2: 68, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22645547

RESUMO

In the model plant Arabidopsis thaliana, more than 2000 genes are estimated to encode transcription factors (TFs), which clearly emphasizes the importance of transcriptional control. Although genomic approaches have generated large TF open reading frame (ORF) collections, only a limited number of these genes is functionally characterized, yet. This review evaluates strategies and methods to identify TF functions. In particular, we focus on two recently developed TF screening platforms, which make use of publically available GATEWAY(®)-compatible ORF collections. (1) The Arabidopsis thalianaTF ORF over-Expression (AtTORF-Ex) library provides pooled collections of transgenic lines over-expressing HA-tagged TF genes, which are suited for screening approaches to define TF functions in stress defense and development. (2) A high-throughput microtiter plate based protoplast transactivation (PTA) system has been established to screen for TFs which are regulating a given promoter:Luciferase construct in planta.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...