Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 44: 108546, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36091472

RESUMO

Anthracnose of watermelon is caused by a fungal pathogen Colletotrichum orbiculare. We generated F2 individuals from three different populations: Population 1 (PI 189225 x 'New Hampshire Midget'), Population 2 ('Perola' x PI 189225), and Population 3 ('Verona' x PI 189225). The biparental F2 populations, parents and F1 individuals were inoculated with an isolate of race 2 anthracnose isolated from watermelon. Leaf lesions were visually rated seven days post inoculation on a scale of 0% (no lesion) to 100% (dead true leaf). Here we present the datasets obtained after the disease inoculation. The distribution of data obtained was visualized using histograms and goodness-of-fit was tested using Chi-Square. These datasets provide information on the mode of inheritance of race 2 anthracnose resistance in watermelon.

2.
Front Plant Sci ; 11: 1243, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973825

RESUMO

The sexual expression of watermelon plants is the result of the distribution and occurrence of male, female, bisexual and hermaphrodite flowers on the main and secondary stems. Plants can be monoecious (producing male and female flowers), andromonoecious (producing male and hermaphrodite flowers), or partially andromonoecious (producing male, female, bisexual, and hermaphrodite flowers) within the same plant. Sex determination of individual floral buds and the distribution of the different flower types on the plant, are both controlled by ethylene. A single missense mutation in the ethylene biosynthesis gene CitACS4, is able to promote the conversion of female into hermaphrodite flowers, and therefore of monoecy (genotype MM) into partial andromonoecy (genotype Mm) or andromonoecy (genotype mm). We phenotyped and genotyped, for the M/m locus, a panel of 207 C. lanatus accessions, including five inbreds and hybrids, and found several accessions that were repeatedly phenotyped as PA (partially andromonoecious) in several locations and different years, despite being MM. A cosegregation analysis between a SNV in CitACS4 and the PA phenotype, demonstrated that the occurrence of bisexual and hermaphrodite flowers in a PA line is not dependent on CitACS4, but conferred by an unlinked recessive gene which we called pa. Two different approaches were performed to map the pa gene in the genome of C. lanatus: bulk segregant analysis sequencing (BSA-seq) and genome wide association analysis studies (GWAS). The BSA-seq study was performed using two contrasting bulks, the monoecious M-bulk and the partially andromonoecious PA-bulk, each one generated by pooling DNA from 20 F2 plants. For GWAS, 122 accessions from USDA gene bank, already re-sequenced by genotyping by sequencing (GBS), were used. The combination of the two approaches indicates that pa maps onto a genomic region expanding across 32.24-36.44 Mb in chromosome 1 of watermelon. Fine mapping narrowed down the pa locus to a 867 Kb genomic region containing 101 genes. A number of candidate genes were selected, not only for their function in ethylene biosynthesis and signalling as well as their role in flower development and sex determination, but also by the impact of the SNPs and indels differentially detected in the two sequenced bulks.

3.
Front Public Health ; 8: 585850, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425835

RESUMO

Objectives: The present study is aimed at estimating patient flow dynamic parameters and requirement for hospital beds. Second, the effects of age and gender on parameters were evaluated. Patients and Methods: In this retrospective cohort study, 987 COVID-19 patients were enrolled from SMS Medical College, Jaipur (Rajasthan, India). The survival analysis was carried out from February 29 through May 19, 2020, for two hazards: Hazard 1 was hospital discharge, and Hazard 2 was hospital death. The starting point for survival analysis of the two hazards was considered to be hospital admission. The survival curves were estimated and additional effects of age and gender were evaluated using Cox proportional hazard regression analysis. Results: The Kaplan Meier estimates of lengths of hospital stay (median = 10 days, IQR = 5-15 days) and median survival rate (more than 60 days due to a large amount of censored data) were obtained. The Cox model for Hazard 1 showed no significant effect of age and gender on duration of hospital stay. Similarly, the Cox model 2 showed no significant difference of age and gender on survival rate. The case fatality rate of 8.1%, recovery rate of 78.8%, mortality rate of 0.10 per 100 person-days, and hospital admission rate of 0.35 per 100,000 person-days were estimated. Conclusion: The study estimates hospital bed requirements based on median length of hospital stay and hospital admission rate. Furthermore, the study concludes there are no effects of age and gender on average length of hospital stay and no effects of age and gender on survival time in above-60 age groups.


Assuntos
COVID-19 , Tempo de Internação , Modelos Estatísticos , Alta do Paciente , Taxa de Sobrevida , COVID-19/diagnóstico , COVID-19/mortalidade , Tomada de Decisões , Feminino , Hospitalização , Humanos , Índia , Estudos Retrospectivos , Fatores de Tempo
4.
Plant Biotechnol J ; 17(12): 2246-2258, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31022325

RESUMO

Years of selection for desirable fruit quality traits in dessert watermelon (Citrullus lanatus) has resulted in a narrow genetic base in modern cultivars. Development of novel genomic and genetic resources offers great potential to expand genetic diversity and improve important traits in watermelon. Here, we report a high-quality genome sequence of watermelon cultivar 'Charleston Gray', a principal American dessert watermelon, to complement the existing reference genome from '97103', an East Asian cultivar. Comparative analyses between genomes of 'Charleston Gray' and '97103' revealed genomic variants that may underlie phenotypic differences between the two cultivars. We then genotyped 1365 watermelon plant introduction (PI) lines maintained at the U.S. National Plant Germplasm System using genotyping-by-sequencing (GBS). These PI lines were collected throughout the world and belong to three Citrullus species, C. lanatus, C. mucosospermus and C. amarus. Approximately 25 000 high-quality single nucleotide polymorphisms (SNPs) were derived from the GBS data using the 'Charleston Gray' genome as the reference. Population genomic analyses using these SNPs discovered a close relationship between C. lanatus and C. mucosospermus and identified four major groups in these two species correlated to their geographic locations. Citrullus amarus was found to have a distinct genetic makeup compared to C. lanatus and C. mucosospermus. The SNPs also enabled identification of genomic regions associated with important fruit quality and disease resistance traits through genome-wide association studies. The high-quality 'Charleston Gray' genome and the genotyping data of this large collection of watermelon accessions provide valuable resources for facilitating watermelon research, breeding and improvement.


Assuntos
Citrullus/genética , Genoma de Planta , Mapeamento Cromossômico , Resistência à Doença , Frutas , Estudos de Associação Genética , Genômica , Polimorfismo de Nucleotídeo Único
5.
New Phytol ; 221(1): 415-430, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30022503

RESUMO

The Gy14 cucumber (Cucumis sativus) is resistant to oomyceteous downy mildew (DM), bacterial angular leaf spot (ALS) and fungal anthracnose (AR) pathogens, but the underlying molecular mechanisms are unknown. Quantitative trait locus (QTL) mapping for the disease resistances in Gy14 and further map-based cloning identified a candidate gene for the resistant loci, which was validated and functionally characterized by spatial-temporal gene expression profiling, allelic diversity and phylogenetic analysis, as well as local association studies. We showed that the triple-disease resistances in Gy14 were controlled by the cucumber STAYGREEN (CsSGR) gene. A single nucleotide polymorphism (SNP) in the coding region resulted in a nonsynonymous amino acid substitution in the CsSGR protein, and thus disease resistance. Genes in the chlorophyll degradation pathway showed differential expression between resistant and susceptible lines in response to pathogen inoculation. The causal SNP was significantly associated with disease resistances in natural and breeding populations. The resistance allele has undergone selection in cucumber breeding. The durable, broad-spectrum disease resistance is caused by a loss-of-susceptibility mutation of CsSGR. Probably, this is achieved through the inhibition of reactive oxygen species over-accumulation and phytotoxic catabolite over-buildup in the chlorophyll degradation pathway. The CsSGR-mediated host resistance represents a novel function of this highly conserved gene in plants.


Assuntos
Cucumis sativus/genética , Cucumis sativus/microbiologia , Resistência à Doença/genética , Mutação , Doenças das Plantas/genética , Proteínas de Plantas/genética , Substituição de Aminoácidos , Clorofila/genética , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Oomicetos/patogenicidade , Filogenia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Seleção Genética
6.
Hortic Res ; 5: 64, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30302260

RESUMO

Germplasm collections are a crucial resource to conserve natural genetic diversity and provide a source of novel traits essential for sustained crop improvement. Optimal collection, preservation and utilization of these materials depends upon knowledge of the genetic variation present within the collection. Here we use the high-throughput genotyping-by-sequencing (GBS) technology to characterize the United States National Plant Germplasm System (NPGS) collection of cucumber (Cucumis sativus L.). The GBS data, derived from 1234 cucumber accessions, provided more than 23 K high-quality single-nucleotide polymorphisms (SNPs) that are well distributed at high density in the genome (~1 SNP/10.6 kb). The SNP markers were used to characterize genetic diversity, population structure, phylogenetic relationships, linkage disequilibrium, and population differentiation of the NPGS cucumber collection. These results, providing detailed genetic analysis of the U.S. cucumber collection, complement NPGS descriptive information regarding geographic origin and phenotypic characterization. We also identified genome regions significantly associated with 13 horticulturally important traits through genome-wide association studies (GWAS). Finally, we developed a molecularly informed, publicly accessible core collection of 395 accessions that represents at least 96% of the genetic variation present in the NPGS. Collectively, the information obtained from the GBS data enabled deep insight into the diversity present and genetic relationships among accessions within the collection, and will provide a valuable resource for genetic analyses, gene discovery, crop improvement, and germplasm preservation.

7.
Theor Appl Genet ; 131(3): 597-611, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29159421

RESUMO

KEY MESSAGE: Host resistances in PI 197088 cucumber to downy and powdery mildew pathogens are conferred by 11 (3 with major effect) and 4 (1 major effect) QTL, respectively, and three of which are co-localized. The downy mildew (DM) and powdery mildew (PM) are the two most important foliar diseases of cucurbit crops worldwide. The cucumber accession PI 197088 exhibits high-level resistances to both pathogens. Here, we reported QTL mapping results for DM and PM resistances with 148 recombinant inbred lines from a cross between PI 197088 and the susceptible line 'Coolgreen'. Phenotypic data on responses to natural DM and PM infection were collected in multi-year and multi-location replicated field trials. A high-density genetic map with 2780 single nucleotide polymorphisms (SNPs) from genotyping-by-sequencing and 55 microsatellite markers was developed, which revealed genomic regions with segregation distortion and mis-assemblies in the '9930' cucumber draft genome. QTL analysis identified 11 and 4 QTL for DM and PM resistances accounting for more than 73.5 and 63.0% total phenotypic variance, respectively. Among the 11 DM resistance QTL, dm5.1, dm5.2, and dm5.3 were major-effect contributing QTL, whereas dm1.1, dm2.1, and dm6.2 conferred susceptibility. Of the 4 QTL for PM resistance, pm5.1 was the major-effect QTL explaining 32.4% phenotypic variance and the minor-effect QTL pm6.1 contributed to disease susceptibility. Three PM QTL, pm2.1, pm5.1, and pm6.1, were co-localized with DM QTL dm2.1, dm5.2, and dm6.1, respectively, which was consistent with the observed linkage of PM and DM resistances in PI 197088. The genetic architecture of DM resistance in PI 197088 and another resistant line WI7120 (PI 330628) was compared, and the potential of using PI 197088 in cucumber breeding for downy and powdery mildew resistances is discussed.


Assuntos
Cucumis sativus/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Ascomicetos , Mapeamento Cromossômico , Cucumis sativus/microbiologia , Ligação Genética , Genótipo , Repetições de Microssatélites , Peronospora , Fenótipo , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único
8.
J Hered ; 107(5): 471-7, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27317924

RESUMO

Number of spines on the fruit is an important quality trait in cucumber. The inheritance and identification of molecular markers for fruit spine density gene can provide a basis for breeding and lay the foundation for gene cloning. Cucumber inbred lines NCG-122 with numerous spines and NCG-121 with few spines were used for genetic analysis and gene mapping in this study. Genetic analysis showed that the numerous spines trait in NCG-122 was qualitative, and a single recessive nuclear gene (ns) controlled this trait. The few spines trait was dominant over the numerous spines trait. In the preliminary genetic mapping of the ns gene, 8 SSR markers were found to be linked to ns, which mapped to chromosome 2 (Chr.2) of cucumber. The closest flanking markers SSR22338 and SSR11596 were linked to the ns gene, with genetic distances of 10.2 and 1.7cM, respectively. One-hundred and thirty pairs of new SSR primers and 28 pairs of Indel primers were developed based on sequence information in the preliminary mapping region of ns Fifteen SSR markers and 2 Indel markers were identified to be linked to the ns gene after analysis on the F2 mapping population using the new molecular markers. The 2 closest flanking markers, SSRns-127 and SSR04219, were 0.7 and 2.4 cM from ns, respectively. The physical distance between SSRns-127 and SSR04219 was 266.1kb, containing 27 predicted genes. Csa2G285390 was speculated as the probable candidate gene for numerous spines. The accuracy of the closest linked marker to the ns gene, SSRns-127, for MAS breeding was 95.0%.


Assuntos
Mapeamento Cromossômico , Cucumis sativus/genética , Frutas/genética , Genes de Plantas , Cruzamento , Estudos de Associação Genética , Marcadores Genéticos , Padrões de Herança , Fenótipo , Característica Quantitativa Herdável , Seleção Genética
9.
Theor Appl Genet ; 129(8): 1493-505, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27147071

RESUMO

KEY MESSAGE: Host resistance in WI7120 cucumber to prevailing downy mildew pathogen field populations is conferred by two major-effect, one moderate-effect and two minor-effect QTL. Downy mildew (DM) caused by the obligate oomycete Pseudoperonospora cubensis is the most devastating fungal disease of cucumber worldwide. The molecular mechanism of DM resistance in cucumber is poorly understood, and use of marker-assisted breeding for DM resistance is not widely available. Here, we reported QTL mapping results for DM resistance with 243 F2:3 families from the cross between DM-resistant inbred line WI7120 (PI 330628) and susceptible '9930'. A linkage map was developed with 348 SSR and SNP markers. Phenotyping of DM inoculation responses were conducted in four field trails in 2 years at three locations. Four QTL, dm2.1, dm4.1, dm5.1, and dm6.1 were consistently and reliably detected across at least three of the four environments which together could explain 62-76 % phenotypic variations (R (2)). Among them, dm4.1 and dm5.1 were major-effect QTL (R (2) = 15-30 %) with only additive effects; dm2.1 (R (2) = 5-15 %) and dm6.1 (R (2) = 4-8 %) had moderate and minor effects, respectively. Epistatic effects were detected for dm2.1 and dm6.1 with both dm4.1 and dm5.1. One additional minor-effect QTL, dm6.2 (R (2) = 3-5 %) was only detectable with the chlorosis rating criterion. All alleles contributing to DM resistance were from WI7120. This study revealed two novel QTL for DM resistance and the unique genetic architecture of DM resistance in WI7120 conferring high level resistance to prevailing DM populations in multiple countries. The effects of disease rating scales, rating time and criteria, population size in phenotyping DM resistance on the power of QTL detection, and the use of DM resistance in WI7120 in cucumber breeding were discussed.


Assuntos
Mapeamento Cromossômico , Cucumis sativus/genética , Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Cucumis sativus/microbiologia , Epistasia Genética , Ligação Genética , Oomicetos , Fenótipo , Doenças das Plantas/microbiologia
10.
PLoS One ; 11(2): e0148422, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26845560

RESUMO

Spines or trichomes on the fruit of cucumbers enhance their commercial value in China. In addition, glabrous mutants exhibit resistance to aphids and therefore their use by growers can reduce pesticide residues. Previous studies have reported two glabrous mutant plants containing the genes, csgl1 and csgl2. In the present study, a new glabrous mutant, NCG157, was identified showing a gene interaction effect with csgl1 and csgl2. This mutant showed the glabrous character on stems, leaves, tendrils, receptacles and ovaries, and there were no spines or tumors on the fruit surface. Inheritance analysis showed that a single recessive gene, named csgl3, determined the glabrous trait. An F2 population derived from the cross of two inbred lines 9930 (a fresh market type from Northern China that exhibits trichomes) and NCG157 (an American processing type with glabrous surfaces) was used for genetic mapping of the csgl3 gene. By combining bulked segregant analysis (BAS) with molecular markers, 18 markers, including two simple sequence repeats (SSR), nine insertion deletions (InDel) and seven derived cleaved amplified polymorphism sequences (dCAPs), were identified to link to the csgl3 gene. All of the linked markers were used as anchor loci to locate the csgl3 gene on cucumber chromosome 6. The csgl3 gene was mapped between the dCAPs markers dCAPs-21 and dCAPs-19, at genetic distances of 0.05 cM and 0.15 cM, respectively. The physical distance of this region was 19.6 kb. Three markers, InDel-19, dCAPs-2 and dCAPs-11, co-segregated with csgl3. There were two candidate genes in the region, Csa6M514860 and Csa6M514870. Quantitative real-time PCR showed that the expression of Csa6M514870 was higher in the tissues of 9930 than that of NCG157, and this was consistent with their phenotypic characters. Csa6M514870 is therefore postulated to be the candidate gene for the development of trichomes in cucumber. This study will facilitate marker-assisted selection (MAS) of the smooth plant trait in cucumber breeding and provide for future cloning of csgl3.


Assuntos
Cucumis sativus/genética , Genes de Plantas , Tricomas/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Biologia Computacional/métodos , Cucumis sativus/ultraestrutura , Regulação da Expressão Gênica de Plantas , Ordem dos Genes , Ligação Genética , Loci Gênicos , Marcadores Genéticos , Repetições de Microssatélites , Anotação de Sequência Molecular , Mutação , Especificidade de Órgãos/genética , Fenótipo , Característica Quantitativa Herdável
11.
Hortic Res ; 3: 16066, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066557

RESUMO

Lycopene is a naturally occurring red carotenoid compound that is found in watermelon. Lycopene has antioxidant properties. Lycopene content, sugar content and hollowheart resistance are subject to significant genotype×environment interaction (G×E), which makes breeding for these fruit quality traits difficult. The objectives of this study were to (i) evaluate the influence of years and locations on lycopene content, sugar content and hollowheart resistance for a set of watermelon genotypes, and (ii) identify genotypes with high stability for lycopene, sugar, and hollowheart resistance. A diverse set of 40 genotypes was tested over 3 years and 8 locations across the southern United States in replicated, multi-harvest trials. Lycopene was tested in a subset of 10 genotypes. Data were analyzed using univariate and multivariate stability statistics (BLUP-GGE biplot) using SASGxE and RGxE programs. There were strong effects of environment as well as G×E interaction on watermelon quality traits. On the basis of stability measures, genotypes were classified as stable or unstable for each quality trait. 'Crimson Sweet' is an inbred line with high quality trait performance as well as trait stability. 'Stone Mountain', 'Tom Watson', 'Crimson Sweet' and 'Minilee' were among the best genotypes for lycopene content, sugar content and hollowheart resistance. We developed a stability chart based on marketable yield and average ranking generated from different stability measures for yield attributes and quality traits. The chart will assist in choosing parents for improvement of watermelon cultivars. See http://cuke.hort.ncsu.edu/cucurbit/wmelon/wmelonmain.html.

12.
Phytopathology ; 105(7): 998-1012, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25844827

RESUMO

The downy mildew pathogen, Pseudoperonospora cubensis, which infects plant species in the family Cucurbitaceae, has undergone major changes during the last decade. Disease severity and epidemics are far more destructive than previously reported, and new genotypes, races, pathotypes, and mating types of the pathogen have been discovered in populations from around the globe as a result of the resurgence of the disease. Consequently, disease control through host plant resistance and fungicide applications has become more complex. This resurgence of P. cubensis offers challenges to scientists in many research areas including pathogen biology, epidemiology and dispersal, population structure and population genetics, host preference, host-pathogen interactions and gene expression, genetic host plant resistance, inheritance of host and fungicide resistance, and chemical disease control. This review serves to summarize the current status of this major pathogen and to guide future management and research efforts within this pathosystem.


Assuntos
Cucurbitaceae/microbiologia , Oomicetos/fisiologia , Cucurbitaceae/genética , Resistência Microbiana a Medicamentos , Europa (Continente) , Fungicidas Industriais , Interações Hospedeiro-Patógeno/genética , Controle de Pragas , Doenças das Plantas , Imunidade Vegetal/genética , Estados Unidos
13.
J Hered ; 106(2): 166-76, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25425675

RESUMO

Our genetic diversity study uses microsatellites of known map position to estimate genome level population structure and linkage disequilibrium, and to identify genomic regions that have undergone selection during watermelon domestication and improvement. Thirty regions that showed evidence of selective sweep were scanned for the presence of candidate genes using the watermelon genome browser (www.icugi.org). We localized selective sweeps in intergenic regions, close to the promoters, and within the exons and introns of various genes. This study provided an evidence of convergent evolution for the presence of diverse ecotypes with special reference to American and European ecotypes. Our search for location of linked markers in the whole-genome draft sequence revealed that BVWS00358, a GA repeat microsatellite, is the GAGA type transcription factor located in the 5' untranslated regions of a structure and insertion element that expresses a Cys2His2 Zinc finger motif, with presumed biological processes related to chitin response and transcriptional regulation. In addition, BVWS01708, an ATT repeat microsatellite, located in the promoter of a DTW domain-containing protein (Cla002761); and 2 other simple sequence repeats that association mapping link to fruit length and rind thickness.


Assuntos
Mapeamento Cromossômico , Citrullus/genética , Frutas/genética , Repetições de Microssatélites , Evolução Biológica , DNA de Plantas/genética , Ecótipo , Variação Genética , Genoma de Planta , Desequilíbrio de Ligação , Seleção Genética
14.
G3 (Bethesda) ; 4(11): 2219-30, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25227227

RESUMO

We used genotyping by sequencing to identify a set of 10,480 single nucleotide polymorphism (SNP) markers for constructing a high-resolution genetic map of 1096 cM for watermelon. We assessed the genome-wide variation in recombination rate (GWRR) across the map and found an association between GWRR and genome-wide nucleotide diversity. Collinearity between the map and the genome-wide reference sequence for watermelon was studied to identify inconsistency and chromosome rearrangements. We assessed genome-wide nucleotide diversity, linkage disequilibrium (LD), and selective sweep for wild, semi-wild, and domesticated accessions of Citrullus lanatus var. lanatus to track signals of domestication. Principal component analysis combined with chromosome-wide phylogenetic study based on 1563 SNPs obtained after LD pruning with minor allele frequency of 0.05 resolved the differences between semi-wild and wild accessions as well as relationships among worldwide sweet watermelon. Population structure analysis revealed predominant ancestries for wild, semi-wild, and domesticated watermelons as well as admixture of various ancestries that were important for domestication. Sliding window analysis of Tajima's D across various chromosomes was used to resolve selective sweep. LD decay was estimated for various chromosomes. We identified a strong selective sweep on chromosome 3 consisting of important genes that might have had a role in sweet watermelon domestication.


Assuntos
Citrullus/genética , Genoma de Planta , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Seleção Genética
15.
BMC Genomics ; 15: 767, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25196513

RESUMO

BACKGROUND: A large single nucleotide polymorphism (SNP) dataset was used to analyze genome-wide diversity in a diverse collection of watermelon cultivars representing globally cultivated, watermelon genetic diversity. The marker density required for conducting successful association mapping depends on the extent of linkage disequilibrium (LD) within a population. Use of genotyping by sequencing reveals large numbers of SNPs that in turn generate opportunities in genome-wide association mapping and marker-assisted selection, even in crops such as watermelon for which few genomic resources are available. In this paper, we used genome-wide genetic diversity to study LD, selective sweeps, and pairwise FST distributions among worldwide cultivated watermelons to track signals of domestication. RESULTS: We examined 183 Citrullus lanatus var. lanatus accessions representing domesticated watermelon and generated a set of 11,485 SNP markers using genotyping by sequencing. With a diverse panel of worldwide cultivated watermelons, we identified a set of 5,254 SNPs with a minor allele frequency of ≥ 0.05, distributed across the genome. All ancestries were traced to Africa and an admixture of various ancestries constituted secondary gene pools across various continents. A sliding window analysis using pairwise FST values was used to resolve selective sweeps. We identified strong selection on chromosomes 3 and 9 that might have contributed to the domestication process. Pairwise analysis of adjacent SNPs within a chromosome as well as within a haplotype allowed us to estimate genome-wide LD decay. LD was also detected within individual genes on various chromosomes. Principal component and ancestry analyses were used to account for population structure in a genome-wide association study. We further mapped important genes for soluble solid content using a mixed linear model. CONCLUSIONS: Information concerning the SNP resources, population structure, and LD developed in this study will help in identifying agronomically important candidate genes from the genomic regions underlying selection and for mapping quantitative trait loci using a genome-wide association study in sweet watermelon.


Assuntos
Citrullus/genética , Genoma de Planta , Polimorfismo de Nucleotídeo Único , Mapeamento Cromossômico , Cromossomos de Plantas , Frequência do Gene , Estudo de Associação Genômica Ampla , Genótipo , Desequilíbrio de Ligação , Análise de Componente Principal , Análise de Sequência de DNA
16.
J Hered ; 104(1): 134-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23091223

RESUMO

Bitterness in cucumber fruit and foliage is due to the presence of cucurbitacins. Several genes have been described that control the trait, with bi (bi-1) making fruit and foliage bitter free and Bt (Bt-1) making the fruit highly bitter. Previous studies have reported the inheritance and molecular markers linked to bi-1 or Bt-1, but we were interested in studying the inheritance of fruit bitterness in the progeny of 2 nonbitter fruit inbred lines. The objective was to determine the inheritance of cucumber fruit and foliage bitterness and to locate them on a current linkage map using a recombinant inbred lines (RILs) population derived by crossing 9110Gt and 9930. It was concluded from the inheritance analysis that there were 2 loci controlling fruit bitterness in the population. One locus was in the same position as the location previously identified for bi-1, and another locus was for bi-3. Using a simple sequence repeat (SSR) linkage map, 2 loci for fruit bitterness in this RILs population were mapped. The locus of bi-1 was located at the region between SSR0004 and SSR02309 within the genetic distance of 5.2 cM on chromosome 6. The locus of bi-3 was placed in the region of SSR00116-SSR05321 within the genetic distance of 6.3 cM on chromosome 5. The physical distances for the regions of bi-1 and bi-3 were 11,430.94 Kb with 160 predicted genes and 1528.23 Kb with 198 predicted genes, respectively. Among 160 predicted genes for bi-1, there is a terpene synthase gene named Csa008595, which was speculated as the candidate gene of bi-1.


Assuntos
Cucumis sativus/genética , Cucurbitacinas/genética , Frutas/genética , Folhas de Planta/genética , Alquil e Aril Transferases/genética , Mapeamento Cromossômico , Biologia Computacional , Cruzamentos Genéticos , Cucumis sativus/química , Cucurbitacinas/análise , Primers do DNA/genética , Genes de Plantas/genética , Marcadores Genéticos/genética , Escore Lod , Repetições de Microssatélites/genética , Anotação de Sequência Molecular , Locos de Características Quantitativas/genética
17.
J Hered ; 102(4): 489-93, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21566001

RESUMO

The watermelon (Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus) has high variability for fruit size, shape, rind pattern, and flesh color. This study was designed to measure the qualitative inheritance of rind phenotypes (solid dark green vs. light green). For each of the 2 families, "Mountain Hoosier" × "Minilee" and "Early Arizona" × "Minilee," 6 generations (P(a)S(1), P(b)S(1), F(1), F(2), BC(1)P(a), BC(1)P(b)) were developed. Each family was tested in summer 2008 in 3 environments in North Carolina. Phenotypic data were analyzed with the χ(2) method to test the segregation of Mendelian genes. Deviations from the expected segregation ratios based on hypothesized single dominant gene for solid dark green versus light green rind pattern were recorded, raising questions on the inheritance of this trait. Inheritance of solid dark green rind versus light (gray) rind showed duplicate dominant epistasis. Duplicate dominant epistasis gives rise to a 15:1 ratio (solid dark green:light rind pattern) in F(2) generation. When both the loci are homozygous recessive, we observe light rind pattern. The g-1 and g-2 genes were identified to control light green rind when in homozygous recessive form.


Assuntos
Citrullus/genética , Epistasia Genética , Frutas/fisiologia , Genes de Plantas/genética , Fenótipo , Pigmentação/fisiologia , Cruzamentos Genéticos , Frutas/genética , Padrões de Herança/genética , North Carolina , Pigmentação/genética
18.
Theor Appl Genet ; 120(1): 191-200, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19820912

RESUMO

Zucchini yellow mosaic virus (ZYMV) is one of the most economically important potyviruses infecting cucurbit crops worldwide. Using a candidate gene approach, we cloned and sequenced eIF4E and eIF(iso)4E gene segments in watermelon. Analysis of the nucleotide sequences between the ZYMV-resistant watermelon plant introduction PI 595203 (Citrullus lanatus var. lanatus) and the ZYMV-susceptible watermelon cultivar 'New Hampshire Midget' ('NHM') showed the presence of single nucleotide polymorphisms (SNPs). Initial analysis of the identified SNPs in association studies indicated that SNPs in the eIF4E, but not eIF(iso)4E, were closely associated to the phenotype of ZYMV-resistance in 70 F(2) and 114 BC(1R) progenies. Subsequently, we focused our efforts in obtaining the entire genomic sequence of watermelon eIF4E. Three SNPs were identified between PI 595203 and NHM. One of the SNPs (A241C) was in exon 1 and the other two SNPs (C309A and T554G) were in the first intron of the gene. SNP241 which resulted in an amino acid substitution (proline to threonine) was shown to be located in the critical cap recognition and binding area, similar to that of several plant species resistance to potyviruses. Analysis of a cleaved amplified polymorphism sequence (CAPS) marker derived from this SNP in F(2) and BC(1R) populations demonstrated a cosegregation between the CAPS-2 marker and their ZYMV resistance or susceptibility phenotype. When we investigated whether such SNP mutation in the eIF4E was also conserved in several other PIs of C. lanatus var. citroides, we identified a different SNP (A171G) resulting in another amino acid substitution (D71G) from four ZYMV-resistant C. lanatus var. citroides (PI 244018, PI 482261, PI 482299, and PI 482322). Additional CAPS markers were also identified. Availability of all these CAPS markers will enable marker-aided breeding of watermelon for ZYMV resistance.


Assuntos
Citrullus , Fator de Iniciação 4E em Eucariotos/genética , Imunidade Inata/genética , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Potyvirus/patogenicidade , Sequência de Aminoácidos , Sequência de Bases , Mapeamento Cromossômico , Cromossomos de Plantas , Citrullus/genética , Citrullus/virologia , Produtos Agrícolas/genética , Produtos Agrícolas/virologia , Cruzamentos Genéticos , Fator de Iniciação 4E em Eucariotos/química , Ligação Genética , Marcadores Genéticos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Plantas/química , Isoformas de Proteínas/genética , Estrutura Terciária de Proteína
19.
J Hered ; 98(4): 345-50, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17602177

RESUMO

Plant breeders are interested in the analysis of phenotypic data to measure genetic effects and heritability of quantitative traits and predict gain from selection. Measurement of phenotypic values of 6 related generations (parents, F(1), F(2), and backcrosses) allows for the simultaneous analysis of both Mendelian and quantitative traits. In 1997, Liu et al. released a SAS software based program (SASGENE) for the analysis of inheritance and linkage of qualitative traits. We have developed a new program (SASQuant) that estimates gene effects (Hayman's model), genetic variances, heritability, predicted gain from selection (Wright's and Warner's models), and number of effective factors (Wright's, Mather's, and Lande's models). SASQuant makes use of traditional genetic models and allows for their easy application to complex data sets. SASQuant is freely available and is intended for scientists studying quantitative traits in plant populations.


Assuntos
Cruzamentos Genéticos , Característica Quantitativa Herdável , Software , Simulação por Computador , Variação Genética , Modelos Genéticos , Fenótipo , Plantas/genética
20.
J Hered ; 97(2): 177-85, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16489140

RESUMO

Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] is a diverse species, with fruits of different sizes, shapes, rind patterns, and flesh colors. This study measured the inheritance of novel rind phenotypes and verified the genetics of white, red, salmon yellow, and canary yellow flesh colors. For each of the 11 crosses, six generations (P(a)S1, P(b)S1, F1, F2, BC1P(a), and BC1P(b)) were produced to form 11 families. Three new genes were identified and designated as follows: Scr for the scarlet red flesh color of Dixielee and Red-N-Sweet, Yb for the yellow belly (ground spot) of Black Diamond Yellow Belly, and ins for the intermittent stripes of Navajo Sweet. The inheritance of the C gene for the canary yellow flesh color was verified as single dominant, and a new inbred type line was developed possessing that gene. Aberrations in the segregation of red, white, and salmon yellow flesh colors were recorded, raising questions on the inheritance of these traits. Finally, the spotted phenotype from Moon and Stars was combined with light green and gray rind patterns for the development of novel cultivars with distinctive rind patterns.


Assuntos
Citrullus/genética , Genes de Plantas/genética , Pigmentação/genética , Cruzamento , Citrullus/anatomia & histologia , Cruzamentos Genéticos , Genes Dominantes , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...