Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 513: 684-692, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216576

RESUMO

HYPOTHESIS: The adsorption of anionic surfactants onto positively charged carbonate minerals is typically high due to electrostatic interactions. By blending anionic surfactants with cationic or zwitterionic surfactants, which naturally form surfactant complexes, surfactant adsorption is expected to be influenced by a competition between surfactant complexes and surfactant-surface interactions. EXPERIMENTS: The adsorption behavior of surfactant blends known to form complexes was investigated. The surfactants probed include an anionic C15-18 internal olefin sulfonate (IOS), a zwitterionic lauryl betaine (LB), and an anionic C13-alcohol polyethylene glycol ether carboxylic acid (L38). An analytical method based on high-performance liquid chromatography evaporative light scattering detector (HPLC-ELSD) was developed to measure three individual surfactant concentrations from a blended surfactant solution. The adsorption of the individual surfactants and surfactant blends were systematically investigated on different mineral surfaces using varying brine solutions. FINDINGS: LB adsorption on calcite surfaces was found to be significantly increased when blended with IOS or L38 since it forms surfactant complexes that partition to the surface. However, the total adsorption of the LB-IOS-L38 solution on dolomite decreased from 3.09 mg/m2 to 1.97 mg/m2 when blended together compared to summing the adsorption values of individual surfactants, which highlights the importance of mixed surfactant association.

2.
Langmuir ; 32(40): 10244-10252, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27673699

RESUMO

The static adsorption of C12-14E22, which is a highly ethoxylated nonionic surfactant, was studied on different minerals using high-performance liquid chromatography (HPLC) combined with an evaporative light scattering detector (ELSD). Of particular interest is the surfactant adsorption in the presence of CO2 because it can be used for foam flooding in enhanced oil recovery applications. The effects of the mineral type, impurities, salinity, and temperature were investigated. The adsorption of C12-14E22 on pure calcite was as low as 0.01 mg/m2 but higher on dolomite depending on the silica and clay content in the mineral. The adsorption remained unchanged when the experiments were performed using a brine solution or 0.101 MPa (1 atm) CO2, which indicates that electrostatic force is not the governing factor that drives the adsorption. The adsorption of C12-14E22 on silica may be due to hydrogen bonding between the oxygen in the ethoxy groups of the surfactant and the hydroxyl groups on the mineral surface. Additionally, thermal decomposition of the surfactant was severe at 80 °C but can be inhibited by operating in a reducing environment. Under reducing conditions, adsorption of C12-14E22 increased at higher temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...