Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 155(22): 224302, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34911311

RESUMO

In the rotational spectroscopy community, several popular codes are available to treat multiple internal rotors in a molecule. In terms of the pros and cons of each code, it is often a difficult task to decide which program to apply to a specific internal rotation problem. We faced this issue when dealing with the spectroscopic fingerprint of 4-methylacetophenone (4MAP), recently investigated in the microwave region, which we here extended into the millimeterwave region. The methyl group attached to the phenyl ring in 4MAP undergoes internal rotation with a very low barrier of only 22 cm-1. The acetyl methyl group features a much higher barrier of about 580 cm-1. The performances of a program using the so-called "local" approach in terms of Herschbach's perturbative treatment, SPFIT, as well as three programs XIAM, ERHAM, and ntop, representing "global" fits, were tested. The results aim at helping spectroscopists in the decision on how to tackle their own internal rotation problems.

2.
J Phys Chem A ; 121(38): 7121-7129, 2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28862854

RESUMO

Isopropyl cyanide was recently detected in space as the first branched alkyl compound. Its abundance with respect to n-propyl cyanide in the Galactic center source Sagittarius B2(N2) is about 0.4. Astrochemical model calculations suggest that for the heavier homologue butyl cyanide the branched isomers dominate over the unbranched n-butyl cyanide and that 2-cyanobutane is the most abundant isomer. We have studied the rotational spectrum of 2-cyanobutane between 2 and 24 GHz using Fourier transform microwave spectroscopy and between 36 and 402 GHz employing (sub)millimeter absorption spectroscopy. Transitions of the lowest energy conformer were identified easily. Its rotational spectrum is very rich, and the quantum numbers J and Ka reach values of 111 and 73, respectively. This wealth of data yielded rotational and centrifugal distortion parameters up to tenth order, diagonal and one off-diagonal 14N nuclear quadrupole coupling parameters, and one nuclear spin-rotation coupling parameter. We have also carried out quantum chemical calculations in part to facilitate the assignments. The molecule 2-cyanobutane was not found in the present ALMA data of Sagittarius B2(N2), but it may be found in the more sensitive data that have been completed very recently in the ALMA Cycle 4.

3.
Phys Chem Chem Phys ; 9(25): 3291-7, 2007 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-17579738

RESUMO

We report the anion photoelectron spectra of deprotonated thymine and cytosine at 3.496 eV photodetachment energy using velocity-mapped imaging. The photoelectron spectra of both species exhibit bands resulting from detachment transitions between the anion ground state and the ground state of the neutral radical. Franck-Condon simulations identify the anion isomers that contribute to the observed photoelectron spectrum. For both thymine and cytosine, the photoelectron spectra are consistent with anions formed by removal of a proton from the N atom that normally attaches to the sugar in the nucleotide (N1). For deprotonated thymine, the photoelectron spectrum shows a band due to a ring breathing vibration excited during the photodetachment transition. The electron affinity for the dehydrogenated thymine radical is determined as 3.250 +/- 0.015 eV. For deprotonated cytosine, the photoelectron spectrum lacks any resolved structure and the electron affinity of the dehydrogenated cytosine radical is determined to be 3.037 +/- 0.015 eV. By combining the electron affinity with previously measured gas phase acidities of thymine and cytosine, we determine the bond dissociation energy for the N-H bond that is broken.


Assuntos
Citosina/química , Fotoquímica/métodos , Análise Espectral/métodos , Timina/química , Amidas/química , Ânions , Elétrons , Radicais Livres/química , Gases/química , Hidrogênio/química , Ligação de Hidrogênio , Isomerismo , Estrutura Molecular , Prótons
4.
J Chem Phys ; 124(6): 64303, 2006 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-16483203

RESUMO

Anion photoelectron spectra of Ga(2)N(-) were measured at photodetachment wavelengths of 416 nm(2.978 eV), 355 nm(3.493 eV), and 266 nm(4.661 eV). Both field-free time-of-flight and velocity-map imaging methods were used to collect the data. The field-free time-of-flight data provided better resolution of the features, while the velocity-map-imaging data provided more accurate anisotropy parameters for the peaks. Transitions from the ground electronic state of the anion to two electronic states of the neutral were observed and analyzed with the aid of electronic structure calculations and Franck-Condon simulations. The ground-state band was assigned to a transition between linear ground states of Ga(2)N(-)(X (1)Sigma(g) (+)) and Ga(2)N(X (2)Sigma(u) (+)), yielding the electron affinity of Ga(2)N, 2.506+/-0.008 eV. Vibrationally resolved features in the ground-state band were assigned to symmetric and antisymmetric stretch modes of Ga(2)N, with the latter allowed by vibronic coupling to an excited electronic state. The energy of the observed excited neutral state agrees with that calculated for the A (2)Pi(u) state, but the congested nature of this band in the photoelectron spectrum is more consistent with a transition to a bent neutral state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA