Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Vaccine ; 42(6): 1292-1299, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38296705

RESUMO

BACKGROUND: The emergence and rapid spread of new mutant strains of SARS-CoV-2 necessitate the development of a new generation vaccine capable of neutralizing a broad range of variants. When the SARS-CoV-2 Omicron variant emerged, individuals in China had already received an inactivated (INA) or a type 5 adenovirus-vectored (Ad5) SARS-CoV-2 vaccine targeting the wild-type virus. We have recently developed a bivalent recombinant type 5 vaccine targeting both the wild-type strain and the Omicron variant (Ad5-nCoV/O). The objectives of this study were to assess the immunogenicity of the bivalent vaccine as a booster against both the wild type and the Omicron variant. METHODS: In the single immunization model, mice received one intramuscular immunization with monovalent or bivalent Ad5-vectored vaccines targeting both wild-type SARS-CoV-2 and Omicron variants. In the prime-boost model, mice were primed intramuscularly with an INA or Ad5-vectored vaccine targeting wild-type SARS-CoV-2, and then boosted intramuscularly or intranasally with heterologous or homologous INA or monovalent or bivalent Ad5-vectored vaccines targeting both wild-type SARS-CoV-2 and Omicron variants. The vaccine-induced antibody responses and cellular immune responses were measured using ELISA, pseudovirus-based neutralization assays, the intracellular cytokine staining (ICS) and ELISpot. RESULTS: Single-dose prime vaccination with the monovalent and bivalent vaccines elicited robust antibody responses and CD4 + and CD8 + cellular responses against the spike protein of WT and Omicron SARS-CoV-2. Both intramuscular and intranasal boost vaccination with the bivalent Ad5-nCoV/O following a prime with INA or Ad5-vectored vaccines induced strong serum neutralization antibody responses to both wild type and Omicron variants. A heterologous prime-boost vaccination elicited greater neutralization antibody responses than a homologous prime-boost vaccination when mice were boosted with Ad5-vectored vaccines following a prime with INA. Intranasal boost also resulted in significant mucosal IgA responses. CONCLUSION: The bivalent vaccine Ad5-nCoV/O exhibited robust immunogenicity, inducing broad-spectrum cross-neutralizing antibodies and cellular immune responses against both wild type and Omicron variants of SARS-CoV-2. The results demonstrated the potential of the bivalent vaccine in addressing the challenges posed by emerging SARS-CoV-2 Omicron variants.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Animais , Humanos , Camundongos , Vacinas Combinadas , Modelos Animais de Doenças , SARS-CoV-2 , COVID-19/prevenção & controle , Vacinação , ELISPOT , Adenoviridae/genética , Anticorpos Neutralizantes , Anticorpos Antivirais , Imunogenicidade da Vacina
3.
Opt Lett ; 45(21): 5958-5961, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33137040

RESUMO

An integrated photonic platform is proposed for strong interactions between atomic beams and annealing-free high-quality-factor (Q) microresonators. We fabricated a thin-film, air-clad SiN microresonator with a loaded Q of 1.55×106 around the optical transition of 87Rb at 780 nm. This Q is achieved without annealing the devices at high temperatures, enabling future fully integrated platforms containing optoelectronic circuitry. The estimated single-photon Rabi frequency (2g) is 2π×64MHz 100 nm above the resonator. Our simulation result indicates that miniature atomic beams with a longitudinal speed of 0.2 m/s to 30 m/s will interact strongly with our resonator, allowing for the detection of single-atom transits and realization of scalable single-atom photonic devices. Interactions between racetrack resonators and thermal atomic beams are also simulated.

4.
Nat Commun ; 10(1): 1831, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015477

RESUMO

Micro- and increasingly, nano-fabrication have enabled the miniaturization of atomic devices, from vapor cells to atom chips for Bose-Einstein condensation. Here we present microfabricated planar devices for thermal atomic beams. Etched microchannels were used to create highly collimated, continuous rubidium atom beams traveling parallel to a silicon wafer surface. Precise, lithographic definition of the guiding channels allowed for shaping and tailoring the velocity distributions in ways not possible using conventional machining. Multiple miniature beams with individually prescribed geometries were created, including collimated, focusing and diverging outputs. A "cascaded" collimator was realized with 40 times greater purity than conventional collimators. These localized, miniature atom beam sources can be a valuable resource for a number of quantum technologies, including atom interferometers, clocks, Rydberg atoms, and hybrid atom-nanophotonic systems, as well as enabling controlled studies of atom-surface interactions at the nanometer scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...