Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Opt Soc Am A Opt Image Sci Vis ; 39(11): 2090-2103, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36520706

RESUMO

The optical radiation force acting on a homogeneous and lossless dielectric spherical particle by a polarized Airy beam is analyzed in terms of the generalized Lorenz-Mie theory. The transverse and longitudinal radiation force components are theoretically evaluated and numerically simulated, emphasizing the transverse scale ω0, attenuation parameter γ, and polarization of the incident Airy beam versus the size parameter ka of the sphere. These results reveal that a polarized Airy beam can trap the dielectric sphere in its main caustic or sidelobes of the beam by the optical transverse force and be guided along the parabolic trajectory of the longitudinal optical force. Moreover, γ and ω0 of the Airy beams and ka of the dielectric sphere can affect the amplitude and distribution of the optical force components. This research may be helpful for the development of Airy optical tweezers in applications involving particle manipulation, optical levitation, particle sorting, and other emergent areas.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36279343

RESUMO

In federated learning (FL), the not independently or identically distributed (non-IID) data partitioning impairs the performance of the global model, which is a severe problem to be solved. Despite the extensive literature related to the algorithmic novelties and optimization analysis of FL, there has been relatively little theoretical research devoted to studying the generalization performance of non-IID FL. The generalization research of non-IID FL still lack effective tools and analytical approach. In this article, we propose weighted local Rademacher complexity to pertinently analyze the generalization properties of non-IID FL and derive a sharper excess risk bound based on weighted local Rademacher complexity, where the convergence rate is much faster than the existing bounds. Based on the theoretical results, we present a general framework federated averaging with local rademacher complexity (FedALRC) to lower the excess risk without additional communication costs compared to some famous methods, such as FedAvg. Through extensive experiments, we show that FedALRC outperforms FedAvg, FedProx and FedNova, and those experimental results coincide with our theoretical findings.

3.
Nanomaterials (Basel) ; 12(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055268

RESUMO

In this article, we study the optical force exerted on nanorods. In recent years, the capture of micro-nanoparticles has been a frontier topic in optics. A Photonic Jet (PJ) is an emerging subwavelength beam with excellent application prospects. This paper studies the optical force exerted by photonic jets generated by a plane wave illuminating a Generalized Luneburg Lens (GLLs) on nanorods. In the framework of the dipole approximation, the optical force on the nanorods is studied. The electric field of the photonic jet is calculated by the open-source software package DDSCAT developed based on the Discrete Dipole Approximation (DDA). In this paper, the effects of the nanorods' orientation and dielectric constant on the transverse force Fx and longitudinal force Fy are analyzed. Numerical results show that the maximum value of the positive force and the negative force are equal and appear alternately at the position of the photonic jet. Therefore, to capture anisotropic nanoscale-geometries (nanorods), it is necessary to adjust the position of GLLs continuously. It is worth emphasizing that manipulations with nanorods will make it possible to create new materials at the nanoscale.

4.
Langmuir ; 37(38): 11233-11241, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34528810

RESUMO

The rebound behaviors of multiple droplets simultaneously impacting a superhydrophobic surface were investigated via lattice Boltzmann method (LBM) simulations. Three rebound regions were identified, i.e., an edge-dominating region, a center-dominating region, and an independent rebound region. The occurrence of the rebound regions strongly depends on the droplet spacing and the associated Weber and Reynolds numbers. Three new rebound morphologies, i.e., a pin-shaped morphology, a downward comb-shaped morphology, and an upward comb-shaped morphology, were presented. Intriguingly, in the edge-dominating region, the central droplets experience a secondary wetting process to significantly prolong the contact time. However, in the center-dominating region, the contact time is dramatically shortened because of the strong interactions generated by the central droplets and the central ridges. These findings provide useful information for practical applications such as self-cleaning, anticorrosion, anti-icing, and so forth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...