Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Pharm Sin B ; 13(10): 4234-4252, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37799387

RESUMO

The mesencephalic astrocyte-derived neurotrophic factor (MANF) has been recently identified as a neurotrophic factor, but its role in hepatic fibrosis is unknown. Here, we found that MANF was upregulated in the fibrotic liver tissues of the patients with chronic liver diseases and of mice treated with CCl4. MANF deficiency in either hepatocytes or hepatic mono-macrophages, particularly in hepatic mono-macrophages, clearly exacerbated hepatic fibrosis. Myeloid-specific MANF knockout increased the population of hepatic Ly6Chigh macrophages and promoted HSCs activation. Furthermore, MANF-sufficient macrophages (from WT mice) transfusion ameliorated CCl4-induced hepatic fibrosis in myeloid cells-specific MANF knockout (MKO) mice. Mechanistically, MANF interacted with S100A8 to competitively block S100A8/A9 heterodimer formation and inhibited S100A8/A9-mediated TLR4-NF-κB signal activation. Pharmacologically, systemic administration of recombinant human MANF significantly alleviated CCl4-induced hepatic fibrosis in both WT and hepatocytes-specific MANF knockout (HKO) mice. This study reveals a mechanism by which MANF targets S100A8/A9-TLR4 as a "brake" on the upstream of NF-κB pathway, which exerts an impact on macrophage differentiation and shed light on hepatic fibrosis treatment.

2.
Biomed Pharmacother ; 150: 112943, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35405395

RESUMO

Acute lung injury (ALI) is an urgent respiratory disease without effective treatment. Mesencephalic astrocyte-derived neurotrophic factor (MANF)has been demonstrated to play a suppressive role in some inflammatory conditions. However, the effect of MANF on ALI has not yet been reported. In this study, we collected bronchoalveolar lavage fluid (BALF) from the patients with or without pulmonary inflammation, and used lipopolysaccharide (LPS) to induce mice ALI model. Mono-macrophage-specific MANF knockout (MKO) mice were constructed and recombinant human MANF protein was used to ALI mice. We found that the endogenous MANF protein in both human BALF and mice lung tissues was increased in inflammatory conditions. MANF level in the macrophages of inflammatory lung was higher than that in normal controls in both human and mice. MANF deficiency in macrophages induced lung inflammation and aggravated LPS-induced lung injury. MANF lowered LPS-induced lung injury, inhibited macrophage polarization to M1 functional type. Meanwhile, MANF inhibited-LPS induced activation of NF-κB signal pathway by down regulating phosphorylated p65in lung tissue and macrophages. These results indicate that MANF acts as a suppressor in ALI via negatively regulating NF-κB activation and macrophages polarization, which may be a novel potential target and shed light on ALI therapy.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Macrófagos , Fatores de Crescimento Neural , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Modelos Animais de Doenças , Humanos , Lipopolissacarídeos/farmacologia , Pulmão , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/patologia , Camundongos , Camundongos Knockout , NF-kappa B/metabolismo , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/imunologia , Fatores de Crescimento Neural/metabolismo
3.
Free Radic Biol Med ; 162: 283-297, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33127565

RESUMO

Rifampicin (RFP) has been known to be potentially hepatotoxic and often used as an inducer of cholestatic hepatic injury. Here we found that mesencephalic astrocyte-derived neurotrophic factor (MANF), an endoplasmic reticulum (ER) stress inducible protein, is a protector in RFP-induced liver injury. In cholestatic hepatic injury mice induced by RFP, the liver/body ratio and the levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bile acid (TBA), total bilirubin (TBIL), and direct bilirubin (DBIL) were significantly increased. Meanwhile, the protein and mRNA levels of MANF were remarkably elevated in the liver injury mice. In hepatocyte-specific MANF knockout (HKO) mice, an extra increase in the liver/body ratio and serum ALT, AST, ALP, TBA, TBIL, and DBIL levels was detected after treatment with RFP. In addition, recombinant human MANF (rhMANF) treatment efficiently reduced the liver/body ratio and serum ALT, AST, ALP, TBA, TBIL, and DBIL levels in RFP-induced liver injury mice. Furthermore, we found there is an increase in the number of the apoptotic cells, detected by TUNEL staining in the liver tissues of HKO mice. Meanwhile, the protein levels of C/EBP-homologous protein (CHOP), Ki67, and the proliferating cell nuclear antigen (PCNA), as well as the mRNA level of Ki67 were elevated after treated with RFP, and these parameters were increased more significantly in HKO mice than that in wild type (WT) controls in RFP-induced liver injury. The rhMANF treatment can rescue the cell apoptosis and reduce the protein and mRNA levels of CHOP, Ki67, and PCNA elevated by MANF deletion and RFP. In HKO mice, immunoglobulin heavy chain binding protein (BIP) and activating transcription factor 4 (ATF4) were predominantly increased after treatment with RFP, which were reduced by rhMANF treatment. Therefore, we conclude that hepatocyte-derived MANF is protective for RFP-induced cholestatic hepatic injury via inhibiting ATF4-CHOP signal activation and subsequent cell apoptosis.


Assuntos
Fator 4 Ativador da Transcrição , Rifampina , Fator 4 Ativador da Transcrição/genética , Animais , Astrócitos , Hepatócitos , Fígado , Camundongos , Fatores de Crescimento Neural , Rifampina/toxicidade
4.
Liver Int ; 41(3): 623-639, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33064897

RESUMO

BACKGROUND: Endoplasmic reticulum (ER) perturbations are novel subcellular effectors involved in the ischaemia-reperfusion injury. As an ER stress-inducible protein, mesencephalic astrocyte-derived neurotrophic factor (MANF) has been proven to be increased during ischaemic brain injury. However, the role of MANF in liver ischaemia reperfusion (I/R) injury has not yet been studied. METHODS: To investigate the role of MANF in the process of liver ischaemia-reperfusion, Hepatocyte-specific MANF knockout (MANFhep-/- ) mice and their wild-type (WT) littermates were used in our research. Mice partial (70%) warm hepatic I/R model was established by vascular occlusion. We detected the serum levels of MANF in both liver transplant patients and WT mice before and after liver I/R injury. Recombinant human MANF (rhMANF) was injected into the tail vein before 1 hour occlusion. AST, ALT and Suzuki score were used to evaluate the extent of I/R injury. OGD/R test was performed on primary hepatocytes to simulate IRI in vitro. RNA sequence and RT-PCR were used to detect the cellular signal pathway activation while MANF knockout. RESULTS: We found that MANF expression and secretion are dramatically up-regulated during hepatic I/R. Hepatocyte-specific MANF knockout aggravates the I/R injury through the over-activated ER stress. The systemic administration of rhMANF before ischaemia has the potential to ameliorate I/R-triggered UPR and liver injury. Further study showed that MANF deficiency activated ATF4/CHOP and JNK/c-JUN/CHOP pathways, and rhMANF inhibited the activation of the two proapoptotic pathways caused by MANF deletion. CONCLUSION: Collectively, our study unravels a previously unknown relationship among MANF, UPR and hepatic I/R injury.


Assuntos
Estresse do Retículo Endoplasmático , Fatores de Crescimento Neural , Traumatismo por Reperfusão , Animais , Apoptose , Astrócitos , Hepatócitos , Humanos , Fígado , Camundongos
5.
Hepatology ; 71(4): 1262-1278, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31469428

RESUMO

BACKGROUND AND AIMS: Endoplasmic reticulum (ER) stress is associated with liver inflammation and hepatocellular carcinoma (HCC). However, how ER stress links inflammation and HCC remains obscure. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an ER stress-inducible secretion protein that inhibits inflammation by interacting with the key subunit of nuclear factor kappa light chain enhancer of activated B cells (NF-κB) p65. We hypothesized that MANF may play a key role in linking ER stress and inflammation in HCC. APPROACH AND RESULTS: Here, we found that MANF mRNA and protein levels were lower in HCC tissues versus adjacent noncancer tissues. Patients with high levels of MANF had better relapse-free survival and overall survival rates than those with low levels. MANF levels were also associated with the status of liver cirrhosis, advanced tumor-node-metastasis (TNM) stage, and tumor size. In vitro experiments revealed that MANF suppressed the migration and invasion of hepatoma cells. Hepatocyte-specific deletion of MANF accelerated N-nitrosodiethylamine (DEN)-induced HCC by up-regulating Snail1+2 levels and promoting epithelial-mesenchymal transition (EMT). MANF appeared in the nuclei and was colocalized with p65 in HCC tissues and in tumor necrosis factor alpha (TNF-α)-treated hepatoma cells. The interaction of p65 and MANF was also confirmed by coimmunoprecipitation experiments. Consistently, knockdown of MANF up-regulated NF-κB downstream target genes TNF-α, interleukin (IL)-6 and IL-1α expression in vitro and in vivo. Finally, small ubiquitin-related modifier 1 (SUMO1) promoted MANF nuclear translocation and enhanced the interaction of MANF and p65. Mutation of p65 motifs for SUMOylation abolished the interaction of p65 and MANF. CONCLUSIONS: MANF plays an important role in linking ER stress and liver inflammation by inhibiting the NF-κB/Snail signal pathway in EMT and HCC progression. Therefore, MANF may be a cancer suppressor and a potential therapeutic target for HCC.


Assuntos
Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Transição Epitelial-Mesenquimal , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Fatores de Crescimento Neural/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático , Humanos , Inflamação/metabolismo , Inflamação/patologia , Recidiva , Transdução de Sinais , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Fatores de Transcrição da Família Snail/metabolismo , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
Immunol Lett ; 212: 37-45, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31226359

RESUMO

Splenic immune cells, especially macrophages, play a key role in multiple pathological processes. With a proved anti-inflammatory and immunoregulatory function of mesencephalicastrocyte-derived neurotrophic factor (MANF) in inflammatory disorders, how MANF affects splenic immune cells in physiological and pathophysiological situations is still unknown. In this study, we constructed mono-macrophage-specific MANF knockout (Mø MANF-/-) mice and found the increased splenic M1 macrophages, but no significant change of splenic morphology and size compared with wild type (WT) mice. Also, we established the pathophysiological situation of carbon tetrachloride (CCl4)-induced hepatic fibrosis. Under the hepatic fibrosis, splenic M2 macrophages and CD138+ plasma cells were significantly increased in Mø MANF-/- mice. Consistently, we found the increased TGF-ß1 level in serum and spleen of Mø MANF-/- mice as well. Mono-macrophage-specific MANF knockout did not affect the number of splenic T and B cells under both the normal and hepatic fibrosis conditions. Our results suggest a distinct regulation of MANF on splenic immune cells and a specific regulation of MANF on the differentiation of splenic macrophages, which may exert a significant impact on physiological and pathophysiological processes of the spleen.


Assuntos
Diferenciação Celular/imunologia , Cirrose Hepática Experimental/imunologia , Macrófagos/imunologia , Fatores de Crescimento Neural/metabolismo , Baço/citologia , Animais , Tetracloreto de Carbono/toxicidade , Humanos , Cirrose Hepática Experimental/induzido quimicamente , Masculino , Camundongos , Camundongos Knockout , Fatores de Crescimento Neural/genética , Tamanho do Órgão , Baço/imunologia , Baço/patologia , Fator de Crescimento Transformador beta1/sangue , Fator de Crescimento Transformador beta1/imunologia , Fator de Crescimento Transformador beta1/metabolismo
7.
Inflammation ; 42(3): 1015-1022, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30680697

RESUMO

Asthma is characterized by chronic airway inflammation, which is the underlying cause of airway remodeling featured by goblet cell hyperplasia, subepithelial fibrosis, and proliferation of smooth muscle. Sevoflurane has been used to treat life-threatening asthma and our previous study shows that sevoflurane inhibits acute lung inflammation in ovalbumin (OVA)-induced allergic mice. However, the effect of sevoflurane on airway remodeling in the context of chronic airway inflammation and the underlying mechanism are still unknown. Here, female C57BL/6 mice were used to establish chronic airway inflammation model. Hematoxylin and eosin (H&E), periodic acid-Schiff (PAS), and Sirius red (SR) staining were used to evaluate airway remodeling. Protein levels of α-SMA, VEGF, and TGF-ß1 in lung tissues were detected by western blotting analyses and immunohistochemistry staining. Results showed that inhalation of sevoflurane inhibited chronic airway inflammation including inflammatory cell infiltration and pro-inflammatory cytokine production in BALF of the OVA-challenged mice. Meanwhile, sevoflurane suppressed airway thickening, goblet cell hyperplasia, smooth muscle hyperplasia, collagen deposition, and fiber hyperplasia in the lung tissues of the mice with airway remodeling. Most notably, sevoflurane inhibited the OVA-induced expressions of VEGF and TGF-ß1. These results suggested that sevoflurane effectively inhibits airway remodeling in mouse model of chronic airway inflammation, which may be due to the downregulation of VEGF and TGF-ß1in lung tissues. Therefore, our results indicate a potential role of sevoflurane in inhibiting airway remodeling besides its known suppression effect on airway inflammation, and support the use of sevoflurane in treating severe asthma in ICU.


Assuntos
Remodelação das Vias Aéreas/efeitos dos fármacos , Asma/tratamento farmacológico , Inflamação/imunologia , Sevoflurano/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Anestésicos Inalatórios/farmacologia , Animais , Asma/patologia , Regulação para Baixo/efeitos dos fármacos , Feminino , Inflamação/induzido quimicamente , Inflamação/prevenção & controle , Camundongos , Ovalbumina
8.
Phytother Res ; 33(1): 149-158, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30346082

RESUMO

To investigate the suppressive effects of xanthatin on glioma growth in a nude mouse xenograft model and rat orthotopic implantation model using magnetic resonance imaging (MRI) to dynamically monitor the antitumour growth and antiangiogenesis effects of xanthatin. The nude mouse xenograft tumour model and rat orthotopic implantation model were established to observe the antitumour effects of xanthatin in vivo. In the rat orthotopic implanted tumour model, MRI scanning was used to dynamically monitor the antitumour growth effect and evaluate the antiangiogenesis effect of xanthatin. We found that xanthatin at a dose of 0.4 mg/10 g dramatically decreased the growth of xenograft tumours in nude mice. The antiangiogenesis effect of xanthatin C6 glioma was evaluated by dynamic contrast-enhanced (DCE) MRI via comparison of the volume transfer constant (Ktrans ) value, a parameter that reflects vessel permeability. We found that xanthatin at the doses of 8 and 16 mg/kg significantly decreased the Ktrans value, which suggests that xanthatin has antiangiogenesis effects. These data demonstrate the suppressive effects of xanthatin on C6 glioma occur via antiangiogenesis. Meanwhile, this study also provides evidence for the application of quantitative parameters of DCE-MRI for dynamically evaluating the growth and angiogenesis of intracranial tumours and for experimental and clinical research.


Assuntos
Antineoplásicos Fitogênicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Meios de Contraste/uso terapêutico , Furanos/uso terapêutico , Glioma/tratamento farmacológico , Imageamento por Ressonância Magnética/métodos , Animais , Antineoplásicos Fitogênicos/farmacologia , Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Furanos/química , Furanos/farmacologia , Glioma/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Patológica , Ratos
9.
PLoS One ; 10(10): e0139098, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26426929

RESUMO

The localization of eye centers is a very useful cue for numerous applications like face recognition, facial expression recognition, and the early screening of neurological pathologies. Several methods relying on available light for accurate eye-center localization have been exploited. However, despite the considerable improvements that eye-center localization systems have undergone in recent years, only few of these developments deal with the challenges posed by the profile (non-frontal face). In this paper, we first use the explicit shape regression method to obtain the rough location of the eye centers. Because this method extracts global information from the human face, it is robust against any changes in the eye region. We exploit this robustness and utilize it as a constraint. To locate the eye centers accurately, we employ isophote curvature features, the accuracy of which has been demonstrated in a previous study. By applying these features, we obtain a series of eye-center locations which are candidates for the actual position of the eye-center. Among these locations, the estimated locations which minimize the reconstruction error between the two methods mentioned above are taken as the closest approximation for the eye centers locations. Therefore, we combine explicit shape regression and isophote curvature feature analysis to achieve robustness and accuracy, respectively. In practical experiments, we use BioID and FERET datasets to test our approach to obtaining an accurate eye-center location while retaining robustness against changes in scale and pose. In addition, we apply our method to non-frontal faces to test its robustness and accuracy, which are essential in gaze estimation but have seldom been mentioned in previous works. Through extensive experimentation, we show that the proposed method can achieve a significant improvement in accuracy and robustness over state-of-the-art techniques, with our method ranking second in terms of accuracy. According to our implementation on a PC with a Xeon 2.5Ghz CPU, the frame rate of the eye tracking process can achieve 38 Hz.


Assuntos
Olho/anatomia & histologia , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Bases de Dados Factuais , Humanos , Processamento de Imagem Assistida por Computador , Análise de Regressão , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...