Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Cancer ; 15(13): 4374-4385, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947392

RESUMO

Breast cancer (BC) is the most common tumor in women worldwide. TRIM28 (RNF96) plays pleiotropic biological functions, such as silencing target genes, facilitating DNA repair, stimulating cellular proliferation and differentiation, and contributing to cancer progression. TRIM28 plays an increasingly crucial role in cancer, but its impact on BC, including breast invasive carcinoma, remains poorly understood. In the current study, analyses of online databases, quantitative real-time quantitative PCR, immunohistochemistry, and western blotting were performed on patients with breast invasive carcinoma (BRCA). Cordycepin (CD) was used to monitor BC progression and TRIM28 expression in vivo. As a result, we observed that TRIM28 is highly expressed in breast invasive carcinoma tissues compared with the corresponding normal tissues and is correlated with metastatic / invasive progression. High expression of TRIM28 might serve as a prognostic marker for long-term survival in triple-negative BC, advanced BC, or breast invasive carcinoma. Although TRIM28 methylation in tumor tissues of breast invasive carcinoma is not significantly changed compared to the matched normal tissues, the expressions and methylation of TRIM28 are significantly reversely correlated. TRIM28 expression was inhibited by CD in the mouse model, indicating its role in preventing BC progression. Thus, TRIM28 might be a potentially valuable molecular target for forecasting the progression / prognosis of patients with breast invasive carcinoma. CD, which represses BC growth/metastasis, may be involved partially through suppressing TRIM28 expression.

2.
Eur J Clin Microbiol Infect Dis ; 43(7): 1309-1318, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38700663

RESUMO

PURPOSE: Enterobacteriaceae carrying mcr-9, in particularly those also co-containing metallo-ß-lactamase (MBL) and TEM type ß-lactamase, present potential transmission risks and lack adequate clinical response methods, thereby posing a major threat to global public health. The aim of this study was to assess the antimicrobial efficacy of a combined ceftazidime/avibactam (CZA) and aztreonam (ATM) regimen against carbapenem-resistant Enterobacter cloacae complex (CRECC) co-producing mcr-9, MBL and TEM. METHODS: The in vitro antibacterial activity of CZA plus ATM was evaluated using a time-kill curve assay. Furthermore, the in vivo interaction between CZA plus ATM was confirmed using a Galleria mellonella (G. mellonella) infection model. RESULTS: All eight clinical strains of CRECC, co-carrying mcr-9, MBL and TEM, exhibited high resistance to CZA and ATM. In vitro time-kill curve analysis demonstrated that the combination therapy of CZA + ATM exerted significant bactericidal activity against mcr-9, MBL and TEM-co-producing Enterobacter cloacae complex (ECC) isolates with a 100% synergy rate observed in our study. Furthermore, in vivo survival assay using Galleria mellonella larvae infected with CRECC strains co-harboring mcr-9, MBL and TEM revealed that the CZA + ATM combination significantly improved the survival rate compared to the drug-treatment alone and untreated control groups. CONCLUSION: To our knowledge, this study represents the first report on the in vitro and in vivo antibacterial activity of CZA plus ATM against CRECC isolates co-harboring mcr-9, MBL and TEM. Our findings suggest that the combination regimen of CZA + ATM provides a valuable reference for clinicians to address the increasingly complex antibiotic resistance situation observed in clinical microorganisms.


Assuntos
Antibacterianos , Compostos Azabicíclicos , Aztreonam , Ceftazidima , Combinação de Medicamentos , Enterobacter cloacae , Infecções por Enterobacteriaceae , Testes de Sensibilidade Microbiana , beta-Lactamases , Aztreonam/farmacologia , Aztreonam/uso terapêutico , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Enterobacteriaceae/tratamento farmacológico , Infecções por Enterobacteriaceae/microbiologia , Animais , Enterobacter cloacae/efeitos dos fármacos , Enterobacter cloacae/genética , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Humanos , beta-Lactamases/metabolismo , beta-Lactamases/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Quimioterapia Combinada , Mariposas/microbiologia , Farmacorresistência Bacteriana Múltipla/genética , Modelos Animais de Doenças
3.
Exp Ther Med ; 27(2): 52, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38234609

RESUMO

Neuropilin 1 (NRP1/CD304) is a typical membrane-bound co-receptor for vascular endothelial growth factor, semaphorin family members and viral severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, NRP1 expression levels across cancer types and the potential role of SARS-CoV-2 infection in patients with cancer are not clear. Online databases, such as The Cancer Genome Atlas database of Human Protein Atlas, Gene Expression Profiling Interactive Analysis and cBioPortal were used for the expression analysis in this study. Immunohistochemical (IHC) staining for NRP1 was performed in the tissues of patients with non-small cell carcinoma. As a result, it was found that NRP1 mRNA and protein expression levels were highest in the female reproductive tissues and the respiratory system, specifically in the nasopharynx, bronchus and fallopian tube, as well as in adipocytes, hepatic stellate cells, Sertoli cells, endothelial cells and dendritic cells. IHC showed that the NRP1 protein was mainly localized to the cytoplasm and membrane in the tissues of patients with non-small cell carcinoma, demonstrating its role in lung infection by SARS-CoV-2, due to invasion of cell membranes by the virus. Levels of NRP1 mRNA were significantly increased in lymphoid neoplasm diffuse large B-cell lymphoma, esophageal carcinoma, glioblastoma multiforme, head and neck squamous cell carcinoma, kidney renal clear cell carcinoma (KIRC), pancreatic adenocarcinoma, stomach adenocarcinoma and thymoma, and significantly decreased in cervical squamous cell carcinoma and endocervical adenocarcinoma, kidney chromophobe, lung squamous cell carcinoma, ovarian serous cystadenocarcinoma, uterine corpus endometrial carcinoma and uterine carcinosarcoma, compared with corresponding healthy tissues in pancancer, indicating roles for viral invasion in most cancer types. Moreover, low NRP1 expression was significantly associated with long overall survival (OS) time in adrenocortical carcinoma, brain lower grade glioma, stomach adenocarcinoma and uveal melanoma, but with short OS time in KIRC only. The ENST00000374867.6 (NRP1-202) isoform is most highly expressed in most cancer types and thus could be involved in tumorigenesis and SARS-CoV-2 invasion in cancer patients. NRP1 may be involved in SARS-CoV-2 invasion in patients with cancer, including those with lung cancer.

4.
Microbiol Spectr ; 12(2): e0231823, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38197660

RESUMO

Carbapenem-resistant Enterobacterales (CRE) are some of the most important pathogens causing infections, which can be challenging to treat. We identified four blaIMP-carrying CRE isolates and collected clinical data. The transferability and stability of the plasmid were verified by conjugation, successive passaging, and plasmid elimination assays. The IncC blaIMP-4-carrying pIMP4-ECL42 plasmid was successfully transferred into the recipient strain, and the high expression of traD may have facilitated the conjugation transfer of the plasmid. Interestingly, the plasmid showed strong stability in clinical isolates. Whole-genome sequencing was performed on all isolates. We assessed the sequence similarity of blaIMP -harboring plasmid from our institution and compared it to plasmids for which sequence data are publicly available. We found that four blaIMP-carrying CRE belonged to four different sequence types. The checkerboard technique and time-kill assays were used to investigate the best antimicrobial therapies for blaIMP-carrying CRE. The time-kill assay showed that the imipenem of 1× minimum inhibitory concentration (MIC) alone had the bactericidal or bacteriostatic effect against IMP-producing strains at 4-12 h in vitro. Moreover, the combination of tigecycline (0.5/1/2 × MIC) and imipenem (0.5/1 × MIC) showed a bactericidal effect against the blaIMP-26-carrying CRECL60 strain.IMPORTANCECarbapenem-resistant Enterobacterales (CRE) are an urgent public health threat, and infections caused by these microorganisms are often associated with high mortality and limited treatment options. This study aimed to determine the clinical features, molecular characteristics, and plasmid transmissible mechanisms of blaIMP carriage as well as to provide a potential treatment option. Here, we demonstrated that conjugated transfer of the IncC blaIMP-4-carrying plasmid promotes plasmid stability, so inhibition of conjugated transfer and enhanced plasmid loss may be potential ways to suppress the persistence of this plasmid. The imipenem alone or tigecycline-imipenem combination showed a good bactericidal effect against IMP-producing strains. In particular, our study revealed that imipenem alone or tigecycline-imipenem combination may be a potential therapeutic option for patients who are infected with IMP-producing strains. Our study supports further trials of appropriate antibiotics to determine optimal treatment and emphasizes the importance of continued monitoring of IMP-producing strains in the future.


Assuntos
Proteínas de Bactérias , beta-Lactamases , Humanos , Tigeciclina , Proteínas de Bactérias/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Imipenem/farmacologia , Testes de Sensibilidade Microbiana , Plasmídeos
5.
Front Oncol ; 13: 1158087, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37456247

RESUMO

Introduction: In the world, the incidence of breast cancer has surpassed that of lung cancer, and it has become the first malignant tumor among women. Triple-negative breast cancer (TNBC) shows an extremely heterogeneous malignancy toward high recurrence, metastasis, and mortality, but there is a lack of effective targeted therapy. It is urgent to develop novel molecular targets in the occurrence and therapeutics for TNBC, and novel therapeutic strategies to block the recurrence and metastasis of TNBC. Methods: In this study, CTSL (cathepsin L) expression in tissues and adjacent tissues of TNBC patients was monitored by immunohistochemistry and western blots. The correlations between CTSL expressions and clinicopathological characteristics in the patient tissues for TNBC were analyzed. Cell proliferation, migration, and invasion assay were also performed when over-expressed or knocked-down CTSL. Results: We found that the level of CTSL in TNBC is significantly higher than that in the matched adjacent tissues, and associated with differentiated degree, TNM Stage, tumor size, and lymph node metastatic status in TNBC patients. The high level of CTSL was correlated with a short RFS (p<0.001), OS (p<0.001), DMFS (p<0.001), PPS (p= 0.0025) in breast cancer from online databases; while in breast cancer with lymph node-positive, high level of CTSL was correlated with a short DMFS (p<0.001) and RFS (p<0.001). Moreover, in vitro experiments showed that CTSL overexpression promotes the abilities for proliferation, migration, and invasion in MCF-7 and MDA-MB-231 cell lines, while knocking-down CTSL decreases its characteristics in MDA-MB-231 cell lines. Conclusion: CTSL might involve into the regulation of the proliferation, invasion, and metastasis of TNBC. Thus, CTSL would be a novel, potential therapeutic, and prognostic target of TNBC.

6.
Molecules ; 28(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446810

RESUMO

TQFL12 is a novel derivative designed and synthesized on the basis of Thymoquinone (TQ) which is extracted from Nigella sativa seeds. We have demonstrated that TQFL12 was more effective in the treatment of TNBC than TQ. In order to directly reflect the acute toxicity of TQFL12 in vivo, in this study, we designed, synthesized, and compared it with TQ. The mice were administered drugs with different concentration gradients intraperitoneally, and death was observed within one week. The 24 h median lethal dose (LD50) of TQ was calculated to be 33.758 mg/kg, while that of TQFL12 on the 7th day was 81.405 mg/kg, and the toxicity was significantly lower than that of TQ. The liver and kidney tissues of the dead mice were observed by H&E staining. The kidneys of the TQ group had more severe renal damage, while the degree of the changes in the TQFL12 group was obviously less than that in the TQ group. Western blotting results showed that the expressions of phosphorylated levels of adenylate-activated protein kinase AMPKα were significantly up-regulated in the kidneys of the TQFL12 group. Therefore, it can be concluded that the acute toxicity of TQFL12 in vivo is significantly lower than that of TQ, and its anti-toxicity mechanism may be carried out through the AMPK signaling pathway, which has a good prospect for drug development.


Assuntos
Fígado , Transdução de Sinais , Camundongos , Animais , Benzoquinonas/uso terapêutico , Proteínas Quinases Ativadas por AMP/metabolismo
7.
Front Immunol ; 14: 1166680, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275848

RESUMO

Heat-shock-protein family A (Hsp70) member 5 (HSPA5), aliases GRP78 or BiP, is a protein encoded with 654 amino acids by the HSPA5 gene located on human chromosome 9q33.3. When the endoplasmic reticulum (ER) was stressed, HSPA5 translocated to the cell surface, the mitochondria, and the nucleus complexed with other proteins to execute its functions. On the cell surface, HSPA5/BiP/GRP78 can play diverse functional roles in cell viability, proliferation, apoptosis, attachments, and innate and adaptive immunity regulations, which lead to various diseases, including cancers and coronavirus disease 2019 (COVID-19). COVID-19 is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which caused the pandemic since the first outbreak in late December 2019. HSPA5, highly expressed in the malignant tumors, likely plays a critical role in SARS-CoV-2 invasion/attack in cancer patients via tumor tissues. In the current study, we review the newest research progresses on cell surface protein HSPA5 expressions, functions, and mechanisms for cancers and SARS-CoV-2 invasion. The therapeutic and prognostic significances and prospects in cancers and COVID-19 disease by targeting HSPA5 are also discussed. Targeting HSPA5 expression by natural products may imply the significance in clinical for both anti-COVID-19 and anti-cancers in the future.


Assuntos
COVID-19 , Neoplasias , Humanos , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana , SARS-CoV-2/metabolismo
8.
Front Immunol ; 14: 1098700, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006240

RESUMO

Introduction: Lung adenocarcinoma (LUAD), as the most frequent pathological subtype of non-small cell lung cancer, is often characterized by poor prognosis and low 5-year survival rate. Exploriton of new biomarkers and accurate molecular mechanisms for effectively predicting the prognosis of LUAD patients is still necessary. Presently, BTG2 and SerpinB5, which play important roles in tumors, are studied as a gene pair for the first time with the aim of exploring whether they can be used as potential prognostic markers. Methods: Using the bioinformatics method to explore whether BTG2 and SerpinB5 can become independent prognostic factors, and explore their clinical application value and whether they can be used as immunotherapeutic markers. In addition, we also verify the conclusions obtained from external datasets, molecular docking, and SqRT-PCR. Results: The results show that compared with normal lung tissue, BTG2 expression level was down-regulated and SerpinB5 was up-regulated in LUAD. Additionally, Kaplan-Meier survival analysis demonstrate that the prognosis of low expression level of BTG2 was poor, and that of high expression level of SerpinB5 was poor, suggesting that both of them can be used as independent prognostic factors. Moreover, the prognosis models of the two genes were constructed respectively in this study, and their prediction effect was verified by external data. Besides, ESTIMATE algorithm reveals the relationship between this gene pair and the immune microenvironment. Furthermore, patients with a high expression level of BTG2 and a low expression level of SerpinB5 have higher immunophenoscore for CTLA-4 and PD-1 inhibitors than patients with a low expression level of BTG2 and a high expression level of SerpinB5, indicating that such patients have a more obvious effect of immunotherapy. Discussion: Collectively, all the results demonstrate that BTG2 and SerpinB5 might serve as potential prognostic biomarkers and novel therapeutic targets for LUAD.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Proteínas Imediatamente Precoces , Neoplasias Pulmonares , Humanos , Simulação de Acoplamento Molecular , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/genética , Prognóstico , Microambiente Tumoral , Proteínas Imediatamente Precoces/genética , Proteínas Supressoras de Tumor/genética
9.
Front Immunol ; 14: 1149986, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020558

RESUMO

SRY-box transcription factor 9 (SOX9) (OMIM 608160) is a transcription factor. The expression of SOX9 in pan-cancers and the regulation by small molecules in cancer cell lines are unclear. In the current study, we comprehensively analyzed the expression of SOX9 in normal tissues, tumor tissues and their matched healthy tissues in pan-cancers. The study examined the correlation between immunomodulators and immune cell infiltrations in normal and tumor tissues. Cordycepin (CD), an adenosine analog for SOX9 expression regulation, was also conducted on cancer cells. The results found that SOX9 protein is expressed in a variety of organs, including high expression in 13 organs and no expression in only two organs; in 44 tissues, there was high expression in 31 tissues, medium expression in four tissues, low expression in two tissues, and no expression in the other seven tissues. In pan-cancers with 33 cancer types, SOX9 expression was significantly increased in fifteen cancers, including CESC, COAD, ESCA, GBM, KIRP, LGG, LIHC, LUSC, OV, PAAD, READ, STAD, THYM, UCES, and UCS, but significantly decreased in only two cancers (SKCM and TGCT) compared with the matched healthy tissues. It suggests that SOX9 expression is upregulated in the most cancer types (15/33) as a proto-oncogene. The fact that the decrease of SOX9 expression in SKCM and the increase of SOX9 in the cell lines of melanoma inhibit tumorigenicity in both mouse and human ex vivo models demonstrates that SOX9 could also be a tumor suppressor. Further analyzing the prognostic values for SOX9 expression in cancer individuals revealed that OS is long in ACC and short in LGG, CESC, and THYM, suggesting that high SOX9 expression is positively correlated with the worst OS in LGG, CESC, and THYM, which could be used as a prognostic maker. In addition, CD inhibited both protein and mRNA expressions of SOX9 in a dose-dependent manner in 22RV1, PC3, and H1975 cells, indicating CD's anticancer roles likely via SOX9 inhibition. Moreover, SOX9 might play an important role in tumor genesis and development by participating in immune infiltration. Altogether, SOX9 could be a biomarker for diagnostics and prognostics for pan-cancers and an emerging target for the development of anticancer drugs.


Assuntos
Desoxiadenosinas , Melanoma , Humanos , Animais , Camundongos , Adenosina , Adjuvantes Imunológicos , Fatores de Transcrição SOX9
10.
J Chem Phys ; 158(16)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37096850

RESUMO

Atomic stabilization is a universal phenomenon that occurs when atoms interact with intense and high-frequency laser fields. In this work, we systematically study the influence of the ponderomotive (PM) force, present around the laser focus, on atomic stabilization. We show that the PM force could induce tunneling and even over-barrier ionization to the otherwise stabilized atoms. Such effect may overweigh the typical multiphoton ionization under moderate laser intensities. Our work highlights the importance of an improved treatment of atomic stabilization that includes the influence of the PM force.

11.
Molecules ; 27(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558177

RESUMO

COVID-19 is an acute respiratory disease caused by SARS-CoV-2 that has spawned a worldwide pandemic. ADAM17 is a sheddase associated with the modulation of the receptor ACE2 of SARS-CoV-2. Studies have revealed that malignant phenotypes of several cancer types are closely relevant to highly expressed ADAM17. However, ADAM17 regulation in SARS-CoV-2 invasion and its role on small molecules are unclear. Here, we evaluated the ADAM17 inhibitory effects of cordycepin (CD), thymoquinone (TQ), and N6, N6-dimethyladenosine (m62A), on cancer cells and predicted the anti-COVID-19 potential of the three compounds and their underlying signaling pathways by network pharmacology. It was found that CD, TQ, and m62A repressed the ADAM17 expression upon different cancer cells remarkably. Moreover, CD inhibited GFP-positive syncytia formation significantly, suggesting its potential against SARS-CoV-2. Pharmacological analysis by constructing CD-, TQ-, and m62A-based drug-target COVID-19 networks further indicated that ADAM17 is a potential target for anti-COVID-19 therapy with these compounds, and the mechanism might be relevant to viral infection and transmembrane receptors-mediated signal transduction. These findings imply that ADAM17 is of potentially medical significance for cancer patients infected with SARS-CoV-2, which provides potential new targets and insights for developing innovative drugs against COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Antivirais/farmacologia , Peptidil Dipeptidase A/metabolismo , Enzima de Conversão de Angiotensina 2 , Proteína ADAM17
12.
Artigo em Inglês | MEDLINE | ID: mdl-36294088

RESUMO

In the present study, PbO2 electrodes, doped with different doses of Er (0%, 0.5%, 1%, 2%, and 4%), were fabricated and characterized. Surface morphology characterization by SEM-EDS and XRD showed that Er was successfully doped into the PbO2 catalyst layer and the particle size of Er-PbO2 was reduced significantly. Electrochemical oxidation of sulfamerazine (SMR) in the Er-PbO2 anode system obeyed te pseudo first-order kinetic model with the order of 2% Er-PbO2 > 4% Er-PbO2 > 1% Er-PbO2 > 0.5% Er-PbO2 > 0% PbO2. For 2% Er-PbO2, kSMR was 1.39 h-1, which was only 0.93 h-1 for 0% PbO2. Effects of different operational parameters on SMR degradation in 2% Er-PbO2 anode system were investigated, including the initial pH of the electrolyte and current density. Under the situation of an initial pH of 3, a current density of 30 mA·cm-2, a concentration of SMR 30 mg L-1, and 0.2 M Na2SO4 used as supporting electrolyte, SMR was totally removed in 3 h, and COD mineralization efficiency was achieved 71.3% after 6 h electrolysis. Furthermore, the degradation pathway of SMR was proposed as combining the active sites identification by density functional calculation (DFT) and intermediates detection by LC-MS. Results showed that Er-PbO2 has great potential for antibiotic wastewater treatment in practical applications.


Assuntos
Sulfonamidas , Poluentes Químicos da Água , Sulfamerazina , Poluentes Químicos da Água/análise , Óxidos/química , Eletrodos , Sulfanilamida , Oxirredução , Antibacterianos , Titânio/química
13.
Artigo em Inglês | MEDLINE | ID: mdl-36231662

RESUMO

The sudden onset of the COVID-19 pandemic had a significant impact on all aspects of people's lives, including their attitudes toward society and psychological well-being. This study aimed to analyze the variation in public trust, perceived societal fairness, and well-being before and after the outbreak of the coronavirus disease 2019 (COVID-19). This study used two-wave longitudinal data of 15,487 residents (2018, T1; 2020, T2) derived from the Chinese Family Panel Studies (CFPS). A repeated measures analysis of variance showed that (a) public trust, perceived societal fairness, and subjective well-being significantly improved and (b) depression significantly increased. Linear regression analysis showed that education and socioeconomic status had a significant predictive effect on public trust, perceived societal fairness, and depression; socioeconomic status had a significant predictive effect on subjective well-being. This study provides evidence and direction for current social governance, namely, policy implementation and pandemic response.


Assuntos
COVID-19 , COVID-19/epidemiologia , China/epidemiologia , Surtos de Doenças , Humanos , Pandemias , Confiança
14.
Artigo em Inglês | MEDLINE | ID: mdl-36078560

RESUMO

The spatial distributions of Cr, Ni, Cu, Zn, As, Cd and Pb (potentially toxic elements, PTEs) in sediments and intrinsic influence factors from the Wuliangsuhai wetland of the Hetao Irrigation District, China were studied in this work. The results showed that excluding Zn, the total contents of other PTEs were higher than the background values, of which As (39.26 mg·kg-1) and Cd (0.44 mg·kg-1) were six-fold and seven-fold higher, respectively. Especially, the high levels of Cd (70.17%), Pb (66.53%), and Zn (57.20%) in the non-residual fraction showed high bioavailability and mobility. It indicated that PTEs can enter the food chain more easily and produce much toxicity. Based on Igeo, ICF, and MRI, the contamination of As was the most serious in the middle areas (MDP) of the wetland, and its risk was up to moderately strong. Cd and Pb posed moderate and considerate risk, respectively. Furthermore, 29.50% and 55.54% risk contribution ratio of As and Cd, respectively, showed that they were the dominant contaminants. In addition, the positive correlation between sand, OM, and total contents and chemical fractions of PTEs by using PCM, RDA, and DHCA indicated that physicochemical properties could significantly influence the spatial distributions of PTEs. The work was useful for assessing the level of pollution in the study area and acquiring information for future and possible monitoring and remediation activities.


Assuntos
Metais Pesados , Poluentes do Solo , Cádmio/análise , China , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Chumbo/análise , Metais Pesados/análise , Medição de Risco , Solo/química , Poluentes do Solo/análise , Áreas Alagadas , Zinco/análise
15.
Cell Death Discov ; 8(1): 389, 2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36115849

RESUMO

Epithelial-mesenchymal transition (EMT) inducing transcription factor TWIST1 plays a vital role in cancer metastasis. How the tumor-suppressive E3 ligase, speckle-type POZ protein (SPOP), regulates TWIST1 in breast cancer remains unknown. In this study, we report that SPOP physically interacts with, ubiquitinates, and destabilizes TWIST1. SPOP promotes K63-and K48-linked ubiquitination of TWIST1, predominantly at K73, thereby suppressing cancer cell migration and invasion. Silencing SPOP significantly enhances EMT, which accelerates breast cancer cell migration and invasiveness in vitro and lung metastasis in vivo. Clinically, SPOP is negatively correlated with the levels of TWIST1 in highly invasive breast carcinomas. Reduced SPOP expression, along with elevated TWIST1 levels, is associated with poor prognosis in advanced breast cancer patients, particularly those with metastatic triple-negative breast cancer (TNBC). Taken together, we have disclosed a new mechanism linking SPOP to TWIST1 degradation. Thus SPOP may serve as a prognostic marker and a potential therapeutic target for advanced TNBC patients.

16.
Front Oncol ; 12: 898583, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774120

RESUMO

Cancer metastasis is the most important cause of cancer-related death, and epithelial-to-mesenchymal transition (EMT) plays crucial roles in cancer metastasis. Cordycepin (CD) is highly enriched in the medicinally used Cordyceps mushroom. In this study, we conducted the antimetastatic activities of CD, specifically focusing on its regulatory effects on EMT-inducing transcription factors (EMT-TFs) in triple-negative breast cancer (TNBC). Our study showed CD to inhibit the growth, migration, and invasion of BT549 and 4T1 cancer cell lines, by employing cell viability assay and real-time cell analyses. The protein levels of N-Cadherin and E-Cadherin, as well as their transcription factors TWIST1, SLUG, SNAIL1, and ZEB1 in BT549 and 4T1 cells, were estimated by Western blot assays. Results from dual-luciferase reporter assays demonstrated that CD is capable of inactivating the EMT signaling pathway by inhibiting TWIST1 and SLUG expression. Furthermore, in vivo studies with mice carrying cancer cell-derived allograft tumors showed the inhibitory effect of CD on cancer cell growth and metastasis. Furthermore, the additive/synergistic anti-metastasis effect of CD and thymoquinone (TQ), another natural product with promising anticancer roles, was demonstrated by combinational treatment. The results from this research indicate that CD would be a promising therapeutic molecule against TNBC by targeting EMT-TFs, possibly in SLUG, TWIST1, SNAIL1, and ZEB1.

17.
Int J Biol Sci ; 18(6): 2362-2371, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35414771

RESUMO

CTSL is expressed by cancerous tissues and encodes a lysosomal cysteine proteinase that regulates cancer progression and SARS-CoV-2 entry. Therefore, it is critical to predict the susceptibility of cancer patients for SARS-CoV-2 and evaluate the correlation between disease outcomes and the expression of CTSL in malignant cancer tissues. In the current study, we analyzed CTSL expression, mutation rate, survival and COVID-19 disease outcomes in cancer and normal tissues, using online databases. We also performed immunohistochemistry (IHC) to test CTSL expression and western blot to monitor its regulation by cordycepin (CD), and N6, N6-dimethyladenosine (m62A), respectively. We found that CTSL is conserved across different species, and highly expressed in both normal and cancer tissues from human, as compared to ACE2 or other proteinases/proteases. Additionally, the expression of CTSL protein was the highest in the lung tissue. We show that the mRNA expression of CTSL is 66.4-fold higher in normal lungs and 54.8-fold higher in cancer tissues, as compared to ACE2 mRNA expression in the respective tissues. Compared to other proteases/proteinases/convertases such as TMPRSS2 and FURIN, the expression of CTSL was higher in both normal lungs and lung cancer samples. All these data indicate that CTSL might play an important role in COVID-19 pathogenesis in normal and cancer tissues of the lungs. Additionally, the CTSL-002 isoform containing both the inhibitor_I29 and Peptidase_C1 domains was highly prevalent in all cancers, suggesting its potential role in tumor progression and SARS-CoV-2 entry in multiple types of cancers. Further analysis of the expression of CTSL mutant showed a correlation with FURIN and TMPRSS2, suggesting a potential role of CTSL mutations in modulating SARS-CoV-2 entry in cancers. Moreover, high expression of CTSL significantly correlated with a short overall survival (OS) in lung cancer and glioma. Thus, CTSL might play a major role in the susceptibility of lung cancer and glioma patients to SARS-CoV-2 uptake and COVID-19 severity. Furthermore, CD or m62A inhibited CTSL expression in the cancer cell lines A549, MDA-MB-231, and/or PC3 in a dose dependent manner. In conclusion, we show that CTSL is highly expressed in normal tissues and increased in most cancers, and CD or m62A could inhibit its expression, suggesting the therapeutic potential of targeting CTSL for cancer and COVID-19 treatment.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Glioma , Neoplasias Pulmonares , Enzima de Conversão de Angiotensina 2 , COVID-19/genética , Catepsina L , Furina/genética , Furina/metabolismo , Humanos , RNA Mensageiro , SARS-CoV-2
18.
J Cell Mol Med ; 25(21): 10101-10110, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34609056

RESUMO

Thymoquinone (TQ) has been reported as an anti-tumour drug widely studied in various tumours, and its mechanism and effect of which has become a focus of current research. However, previous studies from our laboratory and other groups found that TQ showed weak anti-tumour effects in many cancer cell lines and animal models. Therefore, it is necessary to modify and optimize the structure of TQ to obtain new chemical entities with high efficiency and low toxicity as candidates for development of new drugs in treating cancer. Therefore, we designed and synthesized several TQ derivatives. Systematic analysis, including in vitro and in vivo, was conducted on a panel of triple-negative breast cancer (TNBC) cells and mouse model to demonstrate whether TQFL12, a new TQ derivative, is more efficient than TQ. We found that the anti-proliferative effect of TQFL12 against TNBC cells is significantly stronger than TQ. We also demonstrated TQFL12 affects different aspects in breast cancer development including cell proliferation, migration, invasion and apoptosis. Moreover, TQFL12 inhibited tumour growth and metastasis in cancer cell-derived xenograft mouse model, with less toxicity compared with TQ. Finally, mechanism research indicated that TQFL12 increased AMPK/ACC activity by stabilizing AMPKα, while molecular docking supported the direct interaction between TQFL12 and AMPKα. Taken together, our findings suggest that TQFL12, as a novel chemical entity, possesses a better inhibitory effect on TNBC cells and less toxicity in both in vitro and in vivo studies. As such, TQFL12 could serve as a potential therapeutic agent for breast cancer.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Antineoplásicos/farmacologia , Benzoquinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Benzoquinonas/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Redução da Medicação , Humanos , Camundongos , Modelos Moleculares , Ligação Proteica , Relação Estrutura-Atividade , Neoplasias de Mama Triplo Negativas/etiologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Front Oncol ; 11: 667995, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34017687

RESUMO

OBJECTIVE: Breast cancer has become the first highest incidence which surpasses lung cancer as the most commonly diagnosed cancer, and the second highest mortality among women worldwide. Thymoquinone (TQ) is a key component from black seed oil and has anti-cancer properties in a variety of tumors, including triple-negative breast cancer (TNBC). METHODS: RNA-sequencing (RNA-seq) was conducted with and without TQ treatment in TNBC cell line BT-549. Gene Ontology (GO) function classification annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses for these genes were conducted. Western blot and semi-quantitative RT-PCR were used to verify the regulated gene. Functional assays by overexpression or knocking down were performed for HSPA6 and its mediator TQ for inhibiting growth, migration and invasion of TNBC cells. The regulatory mechanisms and prognosis for HSPA6 for breast cancer survival were conducted through bioinformatics and online databases. RESULTS: As a result, a total of 141 downregulated and 28 upregulated genes were identified and 18 differentially expressed genes, which might be related to carcinomas, were obtained. Interestingly, GO and KEGG pathway showed their roles on anti-cancer and anti-virus. Further analysis found that the HSPA6 gene was the high significantly upregulated gene, and showed to inhibit TNBC cell growth, migration and invasion. High expression of HSPA6 was positively correlated with long overall survival (OS) in patients with breast cancer, indicating the tumor-suppressive roles for HSPA6. But DNA methylation of HSPA6 may not be the regulatory mechanism for HSPA6 mRNA upregulation in breast cancer tissues, although the mRNA levels of HSPA6 were increased in these cancer tissues compared with normal tissues. Moreover, TQ enhanced the inhibitory effect of migration and invasion when HSPA6 was overexpressed; while HSPA6 was knocked down, TQ attenuated the effects of HSPA6-promoted migration and invasion, demonstrating a partially dependent manner through HSPA6 by TQ treatment. CONCLUSION: We have successfully identified a novel TQ-targeted gene HSPA6, which shows the inhibitory effects on growth, migration and invasion in TNBC cells. Therefore, identification of HSPA6 not only reveals a new TQ regulatory mechanism, but also provides a novel candidate gene for clinical management and treatment of breast cancer, particularly for TNBC.

20.
3 Biotech ; 11(5): 208, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33927996

RESUMO

Retinitis pigmentosa (RP) is a rare and heterogeneous group of inherited ocular diseases. However, the relationship between CACNA2D4 mutations and RP is not well understood. In this study, a Chinese autosomal recessive retinitis pigmentosa (arRP) pedigree was enrolled and targeted next-generation sequencing was employed for identifying the causative gene in the proband. These steps were followed by confirmatory Sanger sequencing and segregation analysis. RNA-sequencing (RNA-seq) data and semi-quantitative reverse transcription polymerase chain reaction analysis were then applied to examine the expressions in the human and mouse tissues. Novel compound heterozygous, deleterious missense variants of the CACNA2D4 gene, NM_172364.4: c.G955A (p.D319N) and c.A1822C (p.I608L), were identified in the arRP pedigree, co-segregating with the clinical phenotype in the patient. The CACNA2D4 protein is highly conserved among species. The CACNA2D4 mRNA expression showed the highest expression in the retina of humans and in the later four developmental stages/times of retinal tissues in mice, indicating its role in retina/eye functions and developments. This study is the first to identify novel compound heterozygous mutations c.G955A (p.D319N) and c.A1822C (p.I608L) in the CACNA2D4 gene. These might be disease-causing mutations, thereby extending the mutational spectra. The identification of pathogenic CACNA2D4 variants is expected to enhance our understanding of the genotype-phenotype correlations of arRP for disease diagnosis and genetic counseling. The relationship between the CACNA2D4 variants and diseases/phenotypes other than RP has also been reviewed and discussed in this paper.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...