Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Clin Transl Oncol ; 26(9): 2369-2379, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38602643

RESUMO

PURPOSE: Machine learning (ML) models presented an excellent performance in the prognosis prediction. However, the black box characteristic of ML models limited the clinical applications. Here, we aimed to establish explainable and visualizable ML models to predict biochemical recurrence (BCR) of prostate cancer (PCa). MATERIALS AND METHODS: A total of 647 PCa patients were retrospectively evaluated. Clinical parameters were identified using LASSO regression. Then, cohort was split into training and validation datasets with a ratio of 0.75:0.25 and BCR-related features were included in Cox regression and five ML algorithm to construct BCR prediction models. The clinical utility of each model was evaluated by concordance index (C-index) values and decision curve analyses (DCA). Besides, Shapley Additive Explanation (SHAP) values were used to explain the features in the models. RESULTS: We identified 11 BCR-related features using LASSO regression, then establishing five ML-based models, including random survival forest (RSF), survival support vector machine (SSVM), survival Tree (sTree), gradient boosting decision tree (GBDT), extreme gradient boosting (XGBoost), and a Cox regression model, C-index were 0.846 (95%CI 0.796-0.894), 0.774 (95%CI 0.712-0.834), 0.757 (95%CI 0.694-0.818), 0.820 (95%CI 0.765-0.869), 0.793 (95%CI 0.735-0.852), and 0.807 (95%CI 0.753-0.858), respectively. The DCA showed that RSF model had significant advantages over all models. In interpretability of ML models, the SHAP value demonstrated the tangible contribution of each feature in RSF model. CONCLUSIONS: Our score system provide reference for the identification for BCR, and the crafting of a framework for making therapeutic decisions for PCa on a personalized basis.


Assuntos
Aprendizado de Máquina , Recidiva Local de Neoplasia , Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/sangue , Neoplasias da Próstata/patologia , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/patologia , Estudos Retrospectivos , Idoso , Pessoa de Meia-Idade , Prognóstico , Árvores de Decisões , Modelos de Riscos Proporcionais , Algoritmos , Máquina de Vetores de Suporte , Antígeno Prostático Específico/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA