Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 862746, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35937363

RESUMO

Cryptomeria fortunei (Chinese cedar) has outstanding medicinal value due to its abundant flavonoid and terpenoid contents. The metabolite contents of C. fortunei needles differ across different seasons. However, the biosynthetic mechanism of these differentially synthesized metabolites (DSMs) is poorly understood. To improve our understanding of this process, we performed integrated non-targeted metabolomic liquid chromatography and gas chromatography mass spectrometry (LC-MS and GC-MS), and transcriptomic analyses of summer and winter needles. In winter, the C. fortunei needle ultrastructure was damaged, and the chlorophyll content and F v/F m were significantly (p < 0.05) reduced. Based on GC-MS and LC-MS, we obtained 106 and 413 DSMs, respectively; based on transcriptome analysis, we obtained a total of 41.17 Gb of clean data and assembled 33,063 unigenes, including 14,057 differentially expressed unigenes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that these DSMs/DEGs were significantly (p < 0.05) enriched in many biosynthesis pathways, such as terpenoids, photosynthates, and flavonoids. Integrated transcriptomic and metabonomic analyses showed that seasonal changes have the greatest impact on photosynthesis pathways, followed by terpenoid and flavonoid biosynthesis pathways. In summer Chinese cedar (SCC) needles, DXS, DXR, and ispH in the 2-methyl-pentaerythritol 4-phosphate (MEP) pathway and GGPS were highly expressed and promoted the accumulation of terpenoids, especially diterpenoids. In winter Chinese cedar (WCC) needles, 9 genes (HCT, CHS, CHI, F3H, F3'H, F3'5'H, FLS, DFR, and LAR) involved in flavonoid biosynthesis were highly expressed and promoted flavonoid accumulation. This study broadens our understanding of the metabolic and transcriptomic changes in C. fortunei needles caused by seasonal changes and provides a reference regarding the adaptive mechanisms of C. fortunei and the extraction of its metabolites.

2.
Tree Physiol ; 42(9): 1858-1875, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35451493

RESUMO

Cryptomeria fortunei growth and development are usually affected by low temperatures. Despite the evergreen nature of this species, most needles turn yellowish-brown in cold winters. The underlying discoloration mechanisms that cause this phenomenon in response to cold acclimation remain poorly understood. Here, we measured the pigment content and ultrastructure of normal wild-type (Wt) and evergreen mutant (GM) C. fortunei needles and performed integrated transcriptomic and metabolomic analyses to explore potential discoloration mechanisms. The results showed that the needle chlorophyll content of these two genotypes decreased in winter. Wt needles showed greater decrease in the chlorophyll content and local destruction of chloroplast ultrastructure and contained larger amounts of flavonoids than GM needles, as shown by metabolomics analysis. We subsequently identified key differentially expressed genes in the flavonoid biosynthesis pathway and observed significantly upregulated flavonol synthase expression in Wt needles compared with GM needles that significantly increased the anthoxanthin (flavones and flavonols) content, which is likely a key factor underlying the difference in needle color between these two genotypes. Therefore, flavonoid metabolism may play important roles in the cold resistance and needle discoloration of C. fortunei, and our results provide an excellent foundation for the molecular mechanism of C. fortunei in response to cold stress.


Assuntos
Flavonoides , Transcriptoma , Aclimatação , China , Clorofila , Temperatura Baixa , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Metaboloma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA