Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255510

RESUMO

Ultrasonic-assisted precipitation was employed to sustainably isolate Fe in the hydrochloric acid lixivium of low-grade laterite for the synthesis of battery-grade iron phosphate. The recovery efficiency of Ni and Co exceeded 99%, while the removal efficiency of the Fe impurity reached a maximum of 95%. Precipitation parameters for the selective isolation of Fe (MgO precipitant, pH 1, 70-80 °C) were optimized and used in ultrasonic precipitation experiments. The use of ultrasonic waves in the precipitation process enhanced micromixing by reducing the size of primary grains and mitigating particle agglomeration, thereby significantly improving the purity of the isolated compound and providing high-quality iron phosphate (FePO4·2H2O). The LiFePO4/C composite prepared from as-precipitated FePO4 exhibited excellent electrochemical performance, with a discharge capacity of 149.7 mAh/g at 0.1 C and 136.3 mAh/g at 0.5 C after 100 cycles, retaining almost 100% cycling efficiency. This novel and facile method for iron removal from laterite acid lixivium not only efficiently removes excess iron impurities leached due to the poor selectivity of hydrochloric acid, but also enables the high-value utilization of these iron impurities. It enhances economic benefits while simultaneously alleviating environmental pressure.

2.
Materials (Basel) ; 16(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37959548

RESUMO

After the atmospheric hydrochloric acid leaching method is used to treat laterite ore and initially purify it, the extract that results often contains a significant amount of Fe2+ impurities. A novel metallurgical process has been proposed that utilizes microbubble aeration to oxidize Fe2+ ions in laterite hydrochloric acid lixivium, facilitating subsequent separation and capitalizing on the benefits of microbubble technology, including its expansive specific surface area, negatively charged surface attributes, prolonged stagnation duration, and its capacity to produce active oxygen. The study examined the impacts of aeration aperture, stirring speed, oxygen flow rate, pH value, and reaction temperature. Under optimized experimental conditions, which included an aeration aperture of 0.45 µm, stirring at 500 rpm, a bubbling flow rate of 0.4 L/min, pH level maintained at 3.5, and a temperature range of 75-85 °C, the oxidation efficiency of Fe2+ surpassed 99%. An analysis of the mass transfer process revealed that microbubble aeration markedly enhances the oxygen mass transfer coefficient, measured at 0.051 s-1. The study also confirmed the self-catalytic properties of Fe2+ oxidation and conducted kinetic studies to determine an apparent activation energy of 399 kJ/mol. At pH values below 3.5, the reaction is solely governed by chemical reactions; however, at higher pH values (>3.5), both chemical reactions and oxygen dissolution jointly control the reaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...