Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Biosci ; 13(1): 34, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36804022

RESUMO

BACKGROUND: Autosomal dominant lateral temporal epilepsy (ADLTE) is an inherited syndrome caused by mutations in the leucine-rich glioma inactivated 1 (LGI1) gene. It is known that functional LGI1 is secreted by excitatory neurons, GABAergic interneurons, and astrocytes, and regulates AMPA-type glutamate receptor-mediated synaptic transmission by binding ADAM22 and ADAM23. However, > 40 LGI1 mutations have been reported in familial ADLTE patients, more than half of which are secretion-defective. How these secretion-defective LGI1 mutations lead to epilepsy is unknown. RESULTS: We identified a novel secretion-defective LGI1 mutation from a Chinese ADLTE family, LGI1-W183R. We specifically expressed mutant LGI1W183R in excitatory neurons lacking natural LGI1, and found that this mutation downregulated Kv1.1 activity, led to neuronal hyperexcitability and irregular spiking, and increased epilepsy susceptibility in mice. Further analysis revealed that restoring Kv1.1 in excitatory neurons rescued the defect of spiking capacity, improved epilepsy susceptibility, and prolonged the life-span of mice. CONCLUSIONS: These results describe a role of secretion-defective LGI1 in maintaining neuronal excitability and reveal a new mechanism in the pathology of LGI1 mutation-related epilepsy.

2.
Aging (Albany NY) ; 13(20): 23620-23636, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34644262

RESUMO

Amyloid-ß (Aß) accumulating is considered as a causative factor for formation of senile plaque in Alzheimer's disease (AD), but its mechanism is still elusive. The Nicotinamide mononucleotide adenylyltransferase 2 (Nmnat2), a key redox cofactor for energy metabolism, is reduced in AD. Accumulative evidence has shown that the decrease of α-secretase activity, a disintegrin and metalloprotease domain 10 (ADAM10), is responsible for the increase of Aß productions in AD patient's brain. Here, we observe that the activity of α-secretase ADAM10 and levels of Nmnat2 are significantly decreased, meanwhile there is a simultaneous elevation of Aß in Tg2576 mice. Over-expression of Nmnat2 increases the mRNA expression of α-secretase ADAM10 and its activity and inhibits Aß production in N2a/APPswe cells, which can be abolished by Compound C, an AMPK antagonist, suggesting that AMPK is involved in over-expression of Nmnat2 against Aß production. The further assays demonstrate that Nmnat2 activates AMPK by up-regulating the ratio of NAD+/NADH, moreover AMPK agonist AICAR can also increase ADAM10 activity and reduces Aß1-40/1-42. Taken together, Nmnat2 suppresses Aß production and up-regulates ADAM10 in AMPK activity-dependent manner, suggesting that Nmnat2 may serve as a new potential target in arresting AD.


Assuntos
Proteína ADAM10 , Proteínas Quinases Ativadas por AMP , Secretases da Proteína Precursora do Amiloide , Amiloide , Proteínas de Membrana , Nicotinamida-Nucleotídeo Adenililtransferase , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Amiloide/genética , Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Linhagem Celular , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Regulação para Cima/genética
3.
Front Bioeng Biotechnol ; 9: 630055, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996777

RESUMO

Alzheimer's disease (AD) is a devastating disease of the aging population characterized by the progressive and slow brain decay due to the formation of extracellular plaques in the hippocampus. AD cells encompass tangles of twisted strands of aggregated microtubule binding proteins surrounded by plaques. Delivering corresponding drugs in the brain to deal with these clinical pathologies, we face a naturally built strong, protective barrier between circulating blood and brain cells called the blood-brain barrier (BBB). Nanomedicines provide state-of-the-art alternative approaches to overcome the challenges in drug transport across the BBB. The current review presents the advances in the roles of nanomedicines in both the diagnosis and treatment of AD. We intend to provide an overview of how nanotechnology has revolutionized the approaches used to manage AD and highlight the current key bottlenecks and future perspective in this field. Furthermore, the emerging nanomedicines for managing brain diseases like AD could promote the booming growth of research and their clinical availability.

4.
Front Bioeng Biotechnol ; 9: 629832, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33738278

RESUMO

Brain is by far the most complex organ in the body. It is involved in the regulation of cognitive, behavioral, and emotional activities. The organ is also a target for many diseases and disorders ranging from injuries to cancers and neurodegenerative diseases. Brain diseases are the main causes of disability and one of the leading causes of deaths. Several drugs that have shown potential in improving brain structure and functioning in animal models face many challenges including the delivery, specificity, and toxicity. For many years, researchers have been facing challenge of developing drugs that can cross the physical (blood-brain barrier), electrical, and chemical barriers of the brain and target the desired region with few adverse events. In recent years, nanotechnology emerged as an important technique for modifying and manipulating different objects at the molecular level to obtain desired features. The technique has proven to be useful in diagnosis as well as treatments of brain diseases and disorders by facilitating the delivery of drugs and improving their efficacy. As the subject is still hot, and new research findings are emerging, it is clear that nanotechnology could upgrade health care systems by providing easy and highly efficient diagnostic and treatment methods. In this review, we will focus on the application of nanotechnology in the diagnosis and treatment of brain diseases and disorders by illuminating the potential of nanoparticles.

5.
Oxid Med Cell Longev ; 2018: 9647809, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977458

RESUMO

Diaphragm dysfunction is an important clinical problem worldwide. Hydrogen sulfide (H2S) is involved in many physiological and pathological processes in mammals. However, the effect and mechanism of H2S in diaphragm dysfunction have not been fully elucidated. In this study, we detected that the level of H2S was decreased in lipopolysaccharide- (LPS-) treated L6 cells. Treatment with H2S increased the proliferation and viability of LPS-treated L6 cells. We found that H2S decreased reactive oxygen species- (ROS-) induced apoptosis through the mitogen-activated protein kinase (MAPK) signaling pathway in LPS-treated L6 cells. Administration of H2S alleviated LPS-induced inflammation by mediating the toll-like receptor-4 (TLR-4)/nuclear factor-kappa B (NF-κB) signaling pathway in L6 cells. Furthermore, H2S improved diaphragmatic function and structure through the reduction of inflammation and apoptosis in the diaphragm of septic rats. In conclusion, these findings indicate that H2S ameliorates LPS-induced diaphragm dysfunction in rats by reducing apoptosis and inflammation through ROS/MAPK and TLR4/NF-κB signaling pathways. Novel slow-releasing H2S donors can be designed and applied for the treatment of diaphragm dysfunction.


Assuntos
Apoptose/efeitos dos fármacos , Diafragma/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Inflamação/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/fisiologia , Diafragma/metabolismo , Lipopolissacarídeos/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
6.
BMC Cancer ; 18(1): 499, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29716528

RESUMO

BACKGROUND: PEST-containing nuclear protein (PCNP), a novel nuclear protein, is involved in cell proliferation and tumorigenesis. However, the precise mechanism of action of PCNP in the process of tumor growth has not yet been fully elucidated. METHODS: ShRNA knockdown and overexpression of PCNP were performed in human neuroblastoma cells. Tumorigenic and metastatic effects of PCNP were examined by tumor growth, migration, and invasion assays in vitro, as well as xenograft tumor assay in vivo. RESULTS: PCNP over-expression decreased the proliferation, migration, and invasion of human neuroblastoma cells and down-regulation of PCNP showed reverse effects. PCNP over-expression increased protein expressions of cleaved caspase-3, cleaved caspase-8, cleaved caspase-9, and cleaved poly adenosine diphosphate-ribose polymerase, as well as ratios of B-cell lymphoma-2 (Bcl-2)-associated X protein/Bcl-2 and Bcl-2-associated death promoter/B-cell lymphoma-extra large in human neuroblastoma cells, however PCNP knockdown exhibited reverse trends. PCNP over-expression increased phosphorylations of extracellular signal-regulated protein kinase 1/2, p38, c-Jun N-terminal kinase, as well as decreased phosphorylations of phosphatidylinositol 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR), nevertheless PCNP knockdown exhibited opposite effects. Furthermore, PCNP over-expression significantly reduced the growth of human neuroblastoma xenograft tumors by down-regulating angiogenesis, whereas PCNP knockdown markedly promoted the growth of human neuroblastoma xenograft tumors through up-regulation of angiogenesis. CONCLUSIONS: PCNP mediates the proliferation, migration, and invasion of human neuroblastoma cells through mitogen-activated protein kinase and PI3K/AKT/mTOR signaling pathways, implying that PCNP is a therapeutic target for patients with neuroblastoma.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neuroblastoma/metabolismo , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose/genética , Movimento Celular/genética , Proliferação de Células , Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neuroblastoma/genética , Neuroblastoma/patologia , Proteínas Nucleares/genética
7.
Anat Rec A Discov Mol Cell Evol Biol ; 287(2): 1236-45, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16265626

RESUMO

Abnormal hyperphosphorylation of the cytoskeletal protein tau is a characteristic feature of neurodegeneration in Alzheimer's disease (AD) brain. Okadaic acid (OA), a protein phosphatase inhibitor, induces neuronal death and hyperphosphorylation of tau. In the present study using a model of microinjection of OA into rat frontal cortex, we aimed to investigate if OA-induced hyperphosphorylation of tau and neuronal death are related to the expression of Bcl-2, an apoptosis inhibitor, or Bax, an apoptosis inducer. Immunohistochemistry and Western blot analysis showed that OA injection dose- and time-dependently induced the expression of Bcl-2 and Bax protein in the surrounding of OA injection areas, which were similar with that of AT8 immunostaining, a marker of hyperphosphorylated tau. However, the ratios of Bcl-2 over Bax had a negative relationship to the expression of AT8. Furthermore, double fluorescent staining showed that AT8-positive neurons mainly costained with terminal deoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick-end labeling, a marker of DNA damage, indicating that tau hyperphosphorylation may be associated with DNA damage in the neurons of rat brain. In the areas more adjacent to the OA injection site, most neurons with AT8-positive staining showed vulnerability to OA toxicity and could be triple-stained with Bcl-2 and Bax or double-stained with Bcl-2. However, in the areas further from the OA injection site, neurons with few AT8-positive staining showed resistance to OA toxicity and only stained with Bcl-2, but not Bax. The results suggest that the ratios of Bcl-2 over Bax expression may have an effect on tau hyperphosphorylation and neuronal death following OA injection.


Assuntos
Apoptose/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Inibidores Enzimáticos/toxicidade , Neurônios/efeitos dos fármacos , Ácido Okadáico/toxicidade , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Proteína X Associada a bcl-2/biossíntese , Proteínas tau/metabolismo , Animais , Contagem de Células , Córtex Cerebral/metabolismo , Relação Dose-Resposta a Droga , Técnicas Imunoenzimáticas , Marcação In Situ das Extremidades Cortadas , Masculino , Neurônios/metabolismo , Neurônios/patologia , Fosforilação , Ratos , Ratos Sprague-Dawley
8.
Proc Natl Acad Sci U S A ; 101(25): 9453-7, 2004 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-15197280

RESUMO

New neurons are generated in adult mammalians and may contribute to repairing the brain after injury. Here, we show that the number of new neurons in the dentate gyrus of adult rats increased in cerebral ischemic stroke and correlated with activation of the cAMP-response-element-binding protein (CREB). Inhibition of endogenous CREB by expression of a dominant-negative mutant of CREB (CREB-S133A or CREB-R287L) blocked ischemia-induced neurogenesis in the dentate gyrus of adult rats, whereas expression of constitutively active CREB, VP16-CREB, increased the number of new neurons. Thus, our findings provide roles and regulatory mechanisms for CREB in adult neurogenesis and possibly suggest a practical strategy for replacing dead neurons in brain injury.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Giro Denteado/fisiopatologia , Ataque Isquêmico Transitório/fisiopatologia , Regeneração Nervosa/fisiologia , Neurônios/fisiologia , Animais , Feminino , Imuno-Histoquímica , Masculino , Mutagênese , Mutagênese Sítio-Dirigida , Ratos , Proteínas Recombinantes/metabolismo , Caracteres Sexuais
9.
Sheng Li Xue Bao ; 54(4): 287-93, 2002 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-12195275

RESUMO

To study the relationship between tau hyperphosphorylation and the function of glutamate transporter okadaic acid (OA), a protein phosphatase inhibitor, 20 ng in a 0.5 microl volume, was injected into the frontal cortex of rat brain and immunostaining was used to observe the phosphorylation of tau protein and the expression of excitatory amino acid transporter 1 (EAAT1) in the brain following the injection. The results showed that (1) the neurons in the center of the injection region displayed cytoplasmic shrinkage, swelling, nuclear pyknosis, and dislocation at the early stage, and necrosis appeared 3 d after the injection. However, most neurons in the peri-injected areas showed normal morphological characters with immuno positive reaction for AT8, a tau phosphorylated marker; (2) morphological analysis showed that tau hyperphosphorylation caused by OA treatment was mainly observed in the axons and dendrites of neuronal cells at 6 h in the cell body at 1 d, which brought about dystrophic neurites and neurofibrillary tangle (NFT)-like pathological changes; (3) the induction of glutamate transporter EAAT1 was observed in the involved areas corresponding to that with AT8 immunopositive staining, and the number of EAAT1-positive staining cells markedly increased at 12 h (P<0.01), peaked at 1 d (P<0.001), then decreased at 3 d following the injection. Combined with a confocal laser scanning microscopic analysis, double fluorescent immunostaining showed that EAAT1 positive staining appeared in neurons as well as astrocytes in the peri-injected areas of the frontal cortex. These results demonstrate that OA increases glutamate transporter EAAT1 expression in neurons while it induces tau hyperphosphorylation. However, the mechanism and significance of the induction of glutamate transporter EAAT1 expression remain to be further elucidated.


Assuntos
Encéfalo/citologia , Transportador 1 de Aminoácido Excitatório/metabolismo , Neurônios/efeitos dos fármacos , Ácido Okadáico/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Axônios/efeitos dos fármacos , Axônios/metabolismo , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Emaranhados Neurofibrilares/patologia , Neurônios/metabolismo , Fosforilação , Ratos , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...