Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Microanal ; 29(6): 2026-2036, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38066670

RESUMO

Electron counting can be performed algorithmically for monolithic active pixel sensor direct electron detectors to eliminate readout noise and Landau noise arising from the variability in the amount of deposited energy for each electron. Errors in existing counting algorithms include mistakenly counting a multielectron strike as a single electron event, and inaccurately locating the incident position of the electron due to lateral spread of deposited energy and dark noise. Here, we report a supervised deep learning (DL) approach based on Faster region-based convolutional neural network (R-CNN) to recognize single electron events at varying electron doses and voltages. The DL approach shows high accuracy according to the near-ideal modulation transfer function (MTF) and detector quantum efficiency for sparse images. It predicts, on average, 0.47 pixel deviation from the incident positions for 200 kV electrons versus 0.59 pixel using the conventional counting method. The DL approach also shows better robustness against coincidence loss as the electron dose increases, maintaining the MTF at half Nyquist frequency above 0.83 as the electron density increases to 0.06 e-/pixel. Thus, the DL model extends the advantages of counting analysis to higher dose rates than conventional methods.

2.
Microsc Microanal ; 29(2): 552-562, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37749717

RESUMO

The information content of atomic-resolution scanning transmission electron microscopy (STEM) images can often be reduced to a handful of parameters describing each atomic column, chief among which is the column position. Neural networks (NNs) are high performance, computationally efficient methods to automatically locate atomic columns in images, which has led to a profusion of NN models and associated training datasets. We have developed a benchmark dataset of simulated and experimental STEM images and used it to evaluate the performance of two sets of recent NN models for atom location in STEM images. Both models exhibit high performance for images of varying quality from several different crystal lattices. However, there are important differences in performance as a function of image quality, and both models perform poorly for images outside the training data, such as interfaces with large difference in background intensity. Both the benchmark dataset and the models are available using the Foundry service for dissemination, discovery, and reuse of machine learning models.

4.
Microsc Microanal ; 29(Supplement_1): 720, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613342
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...