Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2402442, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958531

RESUMO

The crucial role of TIR1-receptor-mediated gene transcription regulation in auxin signaling has long been established. In recent years, the significant role of protein phosphorylation modifications in auxin signal transduction has gradually emerged. To further elucidate the significant role of protein phosphorylation modifications in auxin signaling, a phosphoproteomic analysis in conjunction with auxin treatment has identified an auxin activated Mitogen-activated Protein Kinase Kinase Kinase (MAPKKK) VH1-INTERACTING Kinase (VIK), which plays an important role in auxin-induced lateral root (LR) development. In the vik mutant, auxin-induced LR development is significantly attenuated. Further investigations show that VIK interacts separately with the positive regulator of LR development, LATERAL ORGAN BOUNDARIES-DOMAIN18 (LBD18), and the negative regulator of LR emergence, Ethylene Responsive Factor 13 (ERF13). VIK directly phosphorylates and stabilizes the positive transcription factor LBD18 in LR formation. In the meantime, VIK directly phosphorylates the negative regulator ERF13 at Ser168 and Ser172 sites, causing its degradation and releasing the repression by ERF13 on LR emergence. In summary, VIK-mediated auxin signaling regulates LR development by enhancing the protein stability of LBD18 and inducing the degradation of ERF13, respectively.

2.
Mol Plant ; 14(2): 285-297, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221411

RESUMO

Auxin plays a critical role in lateral root (LR) formation. The signaling module composed of auxin-response factors (ARFs) and lateral organ boundaries domain transcription factors mediates auxin signaling to control almost every stage of LR development. Here, we show that auxin-induced degradation of the APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factor ERF13, dependent on MITOGEN-ACTIVATED PROTEIN KINASE MPK14-mediated phosphorylation, plays an essential role in LR development. Overexpression of ERF13 results in restricted passage of the LR primordia through the endodermal layer, greatly reducing LR emergence, whereas the erf13 mutants showed an increase in emerged LR. ERF13 inhibits the expression of 3-ketoacyl-CoA synthase16 (KCS16), which encodes a fatty acid elongase involved in very-long-chain fatty acid (VLCFA) biosynthesis. Overexpression of KCS16 or exogenous VLCFA treatment rescues the LR emergence defects in ERF13 overexpression lines, indicating a role downstream of the auxin-MPK14-ERF13 signaling module. Collectively, our study uncovers a novel molecular mechanism by which MPK14-mediated auxin signaling modulates LR development via ERF13-regulated VLCFA biosynthesis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Ácidos Graxos/biossíntese , Ácidos Indolacéticos/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Transdução de Sinais , Fatores de Transcrição/metabolismo , Fosforilação , Raízes de Plantas/metabolismo , Ligação Proteica , Proteólise
3.
J Integr Plant Biol ; 63(4): 662-678, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32790237

RESUMO

Pre-mRNA (messenger RNA) splicing participates in the regulation of numerous biological processes in plants. For example, alternative splicing shapes transcriptomic responses to abiotic and biotic stress, and controls developmental programs. However, no study has revealed a role for splicing in maintaining the root stem cell niche. Here, a screen for defects in root growth in Arabidopsis thaliana identified an ethyl methane sulfonate mutant defective in pre-mRNA splicing (rdm16-4). The rdm16-4 mutant displays a short-root phenotype resulting from fewer cells in the root apical meristem. The PLETHORA1 (PLT1) and PLT2 transcription factor genes are important for root development and were alternatively spliced in rdm16-4 mutants, resulting in a disordered root stem cell niche and retarded root growth. The root cap of rdm16-4 contained reduced levels of cytokinins, which promote differentiation in the developing root. This reduction was associated with the alternative splicing of genes encoding cytokinin signaling factors, such as ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN5 and ARABIDOPSIS RESPONSE REGULATORS (ARR1, ARR2, and ARR11). Furthermore, expression of the full-length coding sequence of ARR1 or exogenous cytokinin application partially rescued the short-root phenotype of rdm16-4. This reveals that the RDM16-mediated alternative splicing of cytokinin signaling components contributes to root growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Processamento de RNA/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Citocininas/genética , Citocininas/metabolismo , Metanossulfonato de Etila , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Meristema/genética , Meristema/metabolismo , Proteínas Nucleares/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...