Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gastroenterology ; 159(2): 609-623, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32275969

RESUMO

BACKGROUND & AIMS: Immune checkpoint inhibitors are effective in the treatment of some hepatocellular carcinomas (HCCs), but these tumors do not always respond to inhibitors of programmed cell death 1 (PDCD1, also called PD1). We investigated mechanisms of resistance of liver tumors in mice to infiltrating T cells. METHODS: Mice were given hydrodynamic tail vein injections of clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR-Cas9) and transposon vectors to disrupt Trp53 and overexpress C-Myc (Trp53KO/C-MycOE mice). Pvrl1 and Pvrl3 were knocked down in Hepa1-6 cells by using short hairpin RNAs. Hepa1-6 cells were injected into livers of C57BL/6 mice; some mice were given intraperitoneal injections of antibodies against PD1, T-cell immunoreceptor with Ig and ITIM domains (TIGIT), or CD8 before the cancer cells were injected. Liver tissues were collected from mice and analyzed by histology, immunohistochemistry, and quantitative real-time polymerase chain reaction; tumors were analyzed by mass cytometry using markers to detect T cells and other lymphocytes. We obtained HCC and nontumorous liver tissues and clinical data from patients who underwent surgery in Hong Kong and analyzed the tissues by immunohistochemistry. RESULTS: Trp53KO/C-MycOE mice developed liver tumors in 3-5 weeks; injections of anti-PD1 did not slow tumor development. Tumors from mice given anti-PD1 had larger numbers of memory CD8+ T cells (CD44+CD62L-KLRG1int) and T cells that expressed PD1, lymphocyte activating 3 (LAG3), and TIGIT compared with mice not given the antibody. HCC tissues from patients had higher levels of PVRL1 messenger RNA and protein than nontumorous tissues. Increased PVRL1 was associated with shorter times of disease-free survival. Knockdown of Pvrl1 in Hepa1-6 cells caused them to form smaller tumors in mice, infiltrated by higher numbers of CD8+ T cells that expressed the inhibitory protein TIGIT; these effects were not observed in mice with depletion of CD8+ T cells. In Hepa1-6 cells, PVRL1 stabilized cell surface PVR, which interacted with TIGIT on CD8+ T cells; knockdown of Pvrl1 reduced cell-surface levels of PVR but not levels of Pvr messenger RNA. In Trp53KO/C-MycOE mice and mice with tumors grown from Hepa1-6 cells, injection of the combination of anti-PD1 and anti-TIGIT significantly reduced tumor growth, increased the ratio of cytotoxic to regulatory T cells in tumors, and prolonged survival. CONCLUSIONS: PVRL1, which is up-regulated by HCC cells, stabilizes cell surface PVR, which interacts with TIGIT, an inhibitory molecule on CD8+ effector memory T cells. This suppresses the ant-tumor immune response. Inhibitors of PVRL1/TIGIT, along with anti-PD1 might be developed for treatment of HCC.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Nectinas/genética , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/mortalidade , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Intervalo Livre de Doença , Regulação Neoplásica da Expressão Gênica/imunologia , Técnicas de Silenciamento de Genes , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/mortalidade , Masculino , Camundongos , Camundongos Knockout , Nivolumabe/farmacologia , Nivolumabe/uso terapêutico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Estabilidade Proteica , Receptores Imunológicos/antagonistas & inibidores , Receptores Imunológicos/metabolismo , Receptores Virais/metabolismo , Critérios de Avaliação de Resposta em Tumores Sólidos , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Proteína Supressora de Tumor p53/genética , Regulação para Cima
2.
Nat Commun ; 8(1): 517, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894087

RESUMO

Myeloid-derived suppressor cells (MDSCs) possess immunosuppressive activities, which allow cancers to escape immune surveillance and become non-responsive to immune checkpoints blockade. Here we report hypoxia as a cause of MDSC accumulation. Using hepatocellular carcinoma (HCC) as a cancer model, we show that hypoxia, through stabilization of hypoxia-inducible factor-1 (HIF-1), induces ectoenzyme, ectonucleoside triphosphate diphosphohydrolase 2 (ENTPD2/CD39L1), in cancer cells, causing its overexpression in HCC clinical specimens. Overexpression of ENTPD2 is found as a poor prognostic indicator for HCC. Mechanistically, we demonstrate that ENTPD2 converts extracellular ATP to 5'-AMP, which prevents the differentiation of MDSCs and therefore promotes the maintenance of MDSCs. We further find that ENTPD2 inhibition is able to mitigate cancer growth and enhance the efficiency and efficacy of immune checkpoint inhibitors. Our data suggest that ENTPD2 may be a good prognostic marker and therapeutic target for cancer patients, especially those receiving immune therapy.Myeloid-derived suppressor cells (MDSCs) promote tumor immune escape. Here, the authors show that in hepatocellular carcinoma, hypoxia induces the expression of ENTPD2 on cancer cells leading to elevated extracellular 5'-AMP, which in turn promote the maintenance of MDSCs by preventing their differentiation.


Assuntos
Adenosina Trifosfatases/metabolismo , Carcinoma Hepatocelular/enzimologia , Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/enzimologia , Células Supressoras Mieloides/enzimologia , Adenosina Trifosfatases/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/fisiopatologia , Diferenciação Celular , Proliferação de Células , Humanos , Hipóxia/enzimologia , Hipóxia/genética , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Fator 1 Induzível por Hipóxia/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/fisiopatologia , Células Supressoras Mieloides/citologia , Células Supressoras Mieloides/metabolismo
3.
J Clin Invest ; 127(5): 1856-1872, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28394261

RESUMO

Cancer cells preferentially utilize glucose and glutamine, which provide macromolecules and antioxidants that sustain rapid cell division. Metabolic reprogramming in cancer drives an increased glycolytic rate that supports maximal production of these nutrients. The folate cycle, through transfer of a carbon unit between tetrahydrofolate and its derivatives in the cytoplasmic and mitochondrial compartments, produces other metabolites that are essential for cell growth, including nucleotides, methionine, and the antioxidant NADPH. Here, using hepatocellular carcinoma (HCC) as a cancer model, we have observed a reduction in growth rate upon withdrawal of folate. We found that an enzyme in the folate cycle, methylenetetrahydrofolate dehydrogenase 1-like (MTHFD1L), plays an essential role in support of cancer growth. We determined that MTHFD1L is transcriptionally activated by NRF2, a master regulator of redox homeostasis. Our observations further suggest that MTHFD1L contributes to the production and accumulation of NADPH to levels that are sufficient to combat oxidative stress in cancer cells. The elevation of oxidative stress through MTHFD1L knockdown or the use of methotrexate, an antifolate drug, sensitizes cancer cells to sorafenib, a targeted therapy for HCC. Taken together, our study identifies MTHFD1L in the folate cycle as an important metabolic pathway in cancer cells with the potential for therapeutic targeting.


Assuntos
Aminoidrolases/metabolismo , Carcinoma Hepatocelular/enzimologia , Ácido Fólico/metabolismo , Formiato-Tetra-Hidrofolato Ligase/metabolismo , Neoplasias Hepáticas/enzimologia , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Complexos Multienzimáticos/metabolismo , Proteínas de Neoplasias/metabolismo , Aminoidrolases/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Ácido Fólico/genética , Formiato-Tetra-Hidrofolato Ligase/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Complexos Multienzimáticos/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas de Neoplasias/genética
4.
Hepatology ; 64(3): 797-813, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27228567

RESUMO

UNLABELLED: A population of stromal cells, myeloid-derived suppressor cells (MDSCs), is present in tumors. Though studies have gradually revealed the protumorigenic functions of MDSCs, the molecular mechanisms guiding MDSC recruitment remain largely elusive. Hypoxia, O2 deprivation, is an important factor in the tumor microenvironment of solid cancers, whose growth often exceeds the growth of functional blood vessels. Here, using hepatocellular carcinoma as the cancer model, we show that hypoxia is an important driver of MDSC recruitment. We observed that MDSCs preferentially infiltrate into hypoxic regions in human hepatocellular carcinoma tissues and that hypoxia-induced MDSC infiltration is dependent on hypoxia-inducible factors. We further found that hypoxia-inducible factors activate the transcription of chemokine (C-C motif) ligand 26 in cancer cells to recruit chemokine (C-X3-C motif) receptor 1-expressing MDSCs to the primary tumor. Knockdown of chemokine (C-C motif) ligand 26 in cancer cells profoundly reduces MDSC recruitment, angiogenesis, and tumor growth. Therapeutically, blockade of chemokine (C-C motif) ligand 26 production in cancer cells by the hypoxia-inducible factor inhibitor digoxin or blockade of chemokine (C-X3-C motif) receptor 1 in MDSCs by chemokine (C-X3-C motif) receptor 1 neutralizing antibody could substantially suppress MDSC recruitment and tumor growth. CONCLUSION: This study unprecedentedly reveals a novel molecular mechanism by which cancer cells direct MDSC homing to primary tumor and suggests that targeting MDSC recruitment represents an attractive therapeutic approach against solid cancers. (Hepatology 2016;64:797-813).


Assuntos
Carcinoma Hepatocelular/metabolismo , Quimiocinas CC/metabolismo , Hipóxia/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Células Supressoras Mieloides/fisiologia , Animais , Sequência de Bases , Receptor 1 de Quimiocina CX3C , Linhagem Celular Tumoral , Quimiocina CCL26 , Digoxina , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Dados de Sequência Molecular , Neovascularização Patológica , Receptores de Quimiocinas/antagonistas & inibidores , Microambiente Tumoral
5.
Oncotarget ; 7(27): 41445-41459, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27213590

RESUMO

Small Rho GTPase (Rho) and its immediate effector Rho kinase (ROCK) are reported to regulate cell survival, but the detailed molecular mechanism remains largely unknown. We had previously shown that Rho/ROCK signaling was highly activated in hepatocellular carcinoma (HCC). In this study, we further demonstrated that downregulation of RhoE, a RhoA antagonist, and upregulation of ROCK enhanced resistance to chemotherapy in HCC in both in vitro cell and in vivo murine xenograft models, whereas a ROCK inhibitor was able to profoundly sensitize HCC tumors to cisplatin treatment. Specifically, the ROCK2 isoform but not ROCK1 maintained the chemoresistance in HCC cells. Mechanistically, we demonstrated that activation of ROCK2 enhanced the phosphorylation of JAK2 and STAT3 through increased expression of IL-6 and the IL-6 receptor complex. We also identified IKKß as the direct downstream target of Rho/ROCK, and activation of ROCK2 significantly augmented NF-κB transcription activity and induced IL-6 expression. These data indicate that Rho/ROCK signaling activates a positive feedback loop of IKKß/NF-κB/IL-6/STAT3 which confers chemoresistance to HCC cells and is a potential molecular target for HCC therapy.


Assuntos
Carcinoma Hepatocelular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Hepáticas/genética , Proteínas rho de Ligação ao GTP/fisiologia , Quinases Associadas a rho/fisiologia , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Cisplatino/uso terapêutico , Sinergismo Farmacológico , Humanos , Interleucina-6/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , NF-kappa B/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Quinases Associadas a rho/antagonistas & inibidores
6.
Clin Cancer Res ; 22(12): 3105-17, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-26819450

RESUMO

PURPOSE: Hepatocellular carcinoma (HCC) lacks effective curative therapy. Hypoxia is commonly found in HCC. Hypoxia elicits a series of protumorigenic responses through hypoxia-inducible factor-1 (HIF1). Better understanding of the metabolic adaptations of HCC cells during hypoxia is essential to the design of new therapeutic regimen. EXPERIMENTAL DESIGN: Expressions of genes involved in the electron transport chain (ETC) in HCC cell lines (20% and 1% O2) and human HCC samples were analyzed by transcriptome sequencing. Expression of NDUFA4L2, a less active subunit in complex I of the ETC, in 100 pairs of HCC and nontumorous liver tissues were analyzed by qRT-PCR. Student t test and Kaplan-Meier analyses were used for clinicopathologic correlation and survival studies. Orthotopic HCC implantation model was used to evaluate the efficiency of HIF inhibitor. RESULTS: NDUFA4L2 was drastically overexpressed in human HCC and induced by hypoxia. NDUFA4L2 overexpression was closely associated with tumor microsatellite formation, absence of tumor encapsulation, and poor overall survival in HCC patients. We confirmed that NDUFA4L2 was HIF1-regulated in HCC cells. Inactivation of HIF1/NDUFA4L2 increased mitochondrial activity and oxygen consumption, resulting in ROS accumulation and apoptosis. Knockdown of NDUFA4L2 markedly suppressed HCC growth and metastasis in vivo HIF inhibitor, digoxin, significantly suppressed growth of tumors that expressed high level of NDUFA4L2. CONCLUSIONS: Our study has provided the first clinical relevance of NDUFA4L2 in human cancer and suggested that HCC patients with NDUFA4L2 overexpression may be suitable candidates for HIF inhibitor treatment. Clin Cancer Res; 22(12); 3105-17. ©2016 AACR.


Assuntos
Carcinoma Hepatocelular/patologia , Hipóxia Celular/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/patologia , NADH Desidrogenase/metabolismo , Estresse Oxidativo/genética , Animais , Apoptose/fisiologia , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Digoxina/farmacologia , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Neoplasias Hepáticas/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Repetições de Microssatélites/genética , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , NADH Desidrogenase/genética , Oxirredução , Consumo de Oxigênio/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
PLoS One ; 9(12): e115036, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25541689

RESUMO

Hepatocellular carcinoma (HCC) is an aggressive tumor, with a high mortality rate due to late symptom presentation and frequent tumor recurrences and metastasis. It is also a rapidly growing tumor supported by different metabolic mechanisms; nevertheless, the biological and molecular mechanisms involved in the metabolic reprogramming in HCC are unclear. In this study, we found that pyruvate kinase M2 (PKM2) was frequently over-expressed in human HCCs and its over-expression was associated with aggressive clinicopathological features and poor prognosis of HCC patients. Furthermore, knockdown of PKM2 suppressed aerobic glycolysis and cell proliferation in HCC cell lines in vitro. Importantly, knockdown of PKM2 hampered HCC growth in both subcutaneous injection and orthotopic liver implantation models, and reduced lung metastasis in vivo. Of significance, PKM2 over-expression in human HCCs was associated with a down-regulation of a liver-specific microRNA, miR-122. We further showed that miR-122 interacted with the 3UTR of the PKM2 gene. Re-expression of miR-122 in HCC cell lines reduced PKM2 expression, decreased glucose uptake in vitro, and suppressed HCC tumor growth in vivo. Our clinical data and functional studies have revealed a novel biological mechanism involved in HCC metabolic reprogramming.


Assuntos
Carcinoma Hepatocelular/patologia , Proteínas de Transporte/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/secundário , Proteínas de Membrana/metabolismo , MicroRNAs/genética , Hormônios Tireóideos/metabolismo , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Glicólise , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas Experimentais , Neoplasias Pulmonares/patologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Nus , MicroRNAs/metabolismo , Prognóstico , Hormônios Tireóideos/genética , Proteínas de Ligação a Hormônio da Tireoide
8.
Hepatology ; 60(5): 1645-58, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25048396

RESUMO

UNLABELLED: Poor prognosis of cancers, including hepatocellular carcinoma (HCC), is mainly associated with metastasis; however, the underlying mechanisms remain poorly understood. This article investigates the role of lysyl oxidase-like 2 (LOXL-2) in the biology of HCC metastasis. First, we showed that HCC metastasis relies on a collagen-modifying enzyme, LOXL2, which was significantly overexpressed in tumorous tissues and sera of HCC patients, indicating that LOXL2 may be a good diagnostic marker for HCC patients. Second, we delineated a complex, interlinked signaling network that involves multiple regulators, including hypoxia, transforming growth factor beta (TGF-ß), and microRNAs (miRNAs), converging to control the expression of LOXL2. We found not only that LOXL2 was regulated by hypoxia/hypoxia-inducible factor 1 alpha (HIF-1α), but also that TGF-ß activated LOXL2 transcription through mothers against decapentaplegic homolog 4 (Smad4), whereas two frequently underexpressed miRNA families, miR-26 and miR-29, cooperatively suppressed LOXL2 transcription through interacting with the 3' untranslated region of LOXL2. Third, we demonstrated the imperative roles of LOXL2 in modifying the extracellular matrix components in the tumor microenvironment and metastatic niche of HCC. LOXL2 promoted intrahepatic metastasis by increasing tissue stiffness, thereby enhancing the cytoskeletal reorganization of HCC cells. Furthermore, LOXL2 facilitated extrahepatic metastasis by enhancing recruitment of bone-marrow-derived cells to the metastatic site. CONCLUSION: These findings integrate the clinical relevance, molecular regulation, and functional implications of LOXL2 in HCC metastasis.


Assuntos
Aminoácido Oxirredutases/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/enzimologia , Neoplasias Hepáticas Experimentais/enzimologia , Animais , Estudos de Casos e Controles , Adesão Celular , Linhagem Celular Tumoral , Colágeno/metabolismo , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , Metástase Neoplásica , Proteína Smad4/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...