Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(17): 26141-26152, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38491241

RESUMO

Agricultural wastes, comprising cotton straw and livestock manure, can be effectively managed through aerobic co-composting. Nevertheless, the quality and microbial characteristics of co-composting products from different sources remain unclear. Therefore, this study utilized livestock manure from various sources in Xinjiang, China, including herbivorous sheep manure (G), omnivorous pigeon manure (Y), and pigeon-sheep mixture (GY) alongside cotton stalks, for a 40-day co-composting process. We monitored physicochemical changes, assessed compost characteristics, and investigated fungal community. The results indicate that all three composts met established composting criteria, with compost G exhibiting the fastest microbial growth and achieving the highest quality. Ascomycota emerged as the predominant taxon in three compost products. Remarkably, at the genus level, the biomarker species for G, Y, and GY are Petromyces and Cordyceps, Neurospora, and Neosartorya, respectively. Microorganisms play a pivotal role in organic matter degradation, impacting nutrient composition, demonstrating significant potential for the decomposition and transformation of compost components. Redundancy analysis indicates that potassium, total organic carbon, and C:N are key factors influencing fungal communities. This study elucidates organic matter degradation in co-composting straw and livestock manure diverse sources, optimizing treatment for efficient agricultural waste utilization and sustainable practices.


Assuntos
Compostagem , Micobioma , Animais , Ovinos , Solo/química , Esterco/microbiologia , Gado , Gossypium
2.
Materials (Basel) ; 16(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37959508

RESUMO

In this paper, nano-silica particles were prepared from chlorosilane residue liquid using an inverse micro-emulsions system formed from octylphenyl polyoxyethylene ether (TX-100)/n-hexanol/cyclohexane/ammonia. The influence of different reaction conditions on the morphology, particle size, and dispersion of nano-silica particles was investigated via single-factor analysis. When the concentration of chlorosilane residue liquid (0.08 mol/L), hydrophile-lipophilic-balance (HLB) values (10.50), and the concentration of ammonia (0.58 mol/L) were under suitable conditions, the nano-silica particles had a more uniform morphology, smaller particle size, and better dispersion, while the size of the nano-silica particles gradually increased with the increase in the molar ratio of water to surfactant (ω). The prepared nano-silica was characterized through XRD, FT-IR, N2 adsorption/desorption experiments, and TG-DSC analysis. The results showed that the prepared nano-silica was amorphous mesoporous silica, and that the BET specific surface area was 850.5 m2/g. It also had good thermal stability. When the temperature exceeded 1140 °C, the nano-silica underwent a phase transition from an amorphous form to crystalline. This method not only promoted the sustainable development of the polysilicon industry, it also provided new ideas for the protection of the ecological environment, the preparation of environmental functional materials, and the recycling of resources and energy.

3.
Environ Toxicol ; 38(11): 2560-2573, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37449708

RESUMO

Environmental exposure to graphene oxide (GO) is likely to happen due to the use and disposal of these materials. Although GO-induced ecological toxicity has been evaluated before by using aquatic models such as zebrafish, previous studies typically focused on the short-term toxicity, whereas this study aimed to investigate the long-term toxicity. To this end, we exposed zebrafish to GO for 6 months, and used RNA-sequencing to reveal the changes of signaling pathways. While GO exposure showed no significant effects on locomotor activities, it induced histological changes in livers. RNA-sequencing data showed that GO altered gene expression profiles, resulting in 82 up-regulated and 275 down-regulated genes, respectively. Through the analysis of gene ontology terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, we found that GO suppressed the signaling pathways related with immune systems. We further verified that GO exposure suppressed the expression of genes involved in anti-virus responses possibly through the inhibition of genes involved in NOD-like receptor signaling pathway. Furthermore, NOD-like receptor-regulated lipid genes were also inhibited, which may consequently lead to decreased lipid staining in fish muscles. We concluded that 6 month-exposure to GO suppressed NOD-like receptor-regulated anti-virus signaling pathways in zebrafish.

4.
Chemosphere ; 303(Pt 1): 134925, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35561766

RESUMO

The manganese is successfully induced as a "bridge joint" to fabricate a new adsorbent (CNC-Mn-PEI) connecting cellulose nanocrystal (CNC) and polyethyleneimine (PEI) respectively. It was used to remove As (III) from waste water. It has been proved that the incompact CNC and PEI were successfully connected by Mn ions, which induced the formation of O-Mn-O bonds and the removal efficiency is maintained in the broad pH range of 4-8, even with the influence of NO3- and CO32-. The CNC-Mn-PEI was characterized by Brunauer-Emmett-Telley (BET) method and the results showed that the nanoparticle of the specific surface area was 106.5753 m2/g, it has a significant improvement, compared with CNC-Mn-DW (0.1918 m2/g). The isotherm and kinetic parameters of arsenic removal on CNC-Mn-PEI were well-fitted by the Langmuir and pseudo-second-order models. The maximum adsorption capacities toward As (III) was 78.02 mg/g. After seven regeneration cycles, the removal of As (III) by the adsorbent decreased from 80.78% to 68.2%. Additionally, the hypothetical adsorption mechanism of "bridge joint" effect was established by FTIR and XPS, which provided the three activated sites from CNC-Mn-PEI can improve the arsenic removal efficiency, and providing a new stratagem for the arsenic pollution treatment.


Assuntos
Arsênio , Arsenitos , Nanocompostos , Nanopartículas , Poluentes Químicos da Água , Adsorção , Arsênio/química , Arsenitos/química , Celulose/química , Concentração de Íons de Hidrogênio , Íons , Cinética , Manganês/química , Nanopartículas/química , Polietilenoimina/química , Poluentes Químicos da Água/análise
5.
Appl Biochem Biotechnol ; 183(3): 729-743, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28391491

RESUMO

Different inoculum sources and acclimatization methods result in different substrate adaptation and biodegradability. To increase straw degradation rate, shorten the digester start-up time, and enhance the biogas production, we domesticated anaerobic sludge by adding microcrystalline cellulose (MCC). During acclimatization, the start-up strategies and reactor performance were investigated to analyze changes in feedstock adaption, biodegradability, and methanogen activity. The effect of the domesticated inoculum was evaluated by testing batch un-pretreated corn stover with a dewatered sludge (DS)-domesticated inoculum as a control. The results showed that (1) using MCC as a substrate rapidly improved microorganism biodegradability and adaptation. (2) MCC as domesticated substrate has relatively stable system and high mass conversion, but with low buffer capacity. (3) Macro- and micronutrients should be added for improving the activity of methanogenic and system's buffer capacity. (4) Using the domesticated inoculums and batch tests to anaerobically digest untreated corn stover yielded rapid biogas production of 292 mL, with an early peak value on the first day. The results indicated that cultivating directional inoculum can efficiently and quickly start-up digester. These investigated results to promote anaerobic digestion of straw for producing biogas speed up the transformation of achievements of biomass solid waste utilization have a positive promoting significance.


Assuntos
Aclimatação/efeitos dos fármacos , Reatores Biológicos/microbiologia , Celulose/farmacologia , Anaerobiose/efeitos dos fármacos , Biodegradação Ambiental/efeitos dos fármacos , Biocombustíveis/microbiologia , Metano/biossíntese , Esgotos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...