Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12132, 2024 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802497

RESUMO

The striatum plays a crucial role in providing input to the basal ganglia circuit and is implicated in the pathological process of Parkinson's disease (PD). Disruption of the dynamic equilibrium in the basal ganglia loop can be attributed to the abnormal functioning of the medium spiny neurons (MSNs) within the striatum, potentially acting as a trigger for PD. Exercise has been shown to mitigate striatal neuronal dysfunction through neuroprotective and neurorestorative effects and to improve behavioral deficits in PD model mice. In addition, this effect is offset by the activation of MSNs expressing dopamine D2 receptors (D2-MSNs). In the current study, we investigated the underlying neurobiological mechanisms of this effect. Our findings indicated that exercise reduces the power spectral density of the beta-band in the striatum and decreases the overall firing frequency of MSNs, particularly in the case of striatal D2-MSNs. These observations were consistent with the results of molecular biology experiments, which revealed that aerobic training specifically enhanced the expression of striatal dopamine D2 receptors (D2R). Taken together, our results suggest that aerobic training aimed at upregulating striatal D2R expression to inhibit the functional activity of D2-MSNs represents a potential therapeutic strategy for the amelioration of motor dysfunction in PD.


Assuntos
Corpo Estriado , Modelos Animais de Doenças , Doença de Parkinson , Condicionamento Físico Animal , Receptores de Dopamina D2 , Animais , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D2/genética , Corpo Estriado/metabolismo , Camundongos , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Masculino , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Neurônios Espinhosos Médios
2.
Brain Res Bull ; 209: 110906, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395109

RESUMO

OBJECTIVE: To investigate the role of the striatal extracellular signal-regulated kinase (Erk1/2) and its phosphorylation (p-Erk1/2) in aerobic training to alleviate the development of the L-DOPA induced dyskinesia (LID) in PD mice. METHODS: Forty-eight male C57BL/6 N mice were randomly divided into the 6-OHDA surgery group (6-OHDA, n=42) and the sham surgery group (Sham, n=6). A two-point injection of 6-OHDA into the right striatum was used to establish a lateralized injury PD model. PD mice were randomly divided into a PD control group (PD, n=13) and a PD exercise group (PDE, n=16), this is followed by 4 weeks of L-DOPA treatment, and PDE mice received concurrent running table training (18 m/min, 40 min/day, 5 times/week). AIM scores were performed weekly, and mice were assessed for motor function after 4 weeks using the rotarod, open field, and gait tests. Immunohistochemistry was used to test nigrostriatal TH expression, Western blot was used to determine Erk1/2 and p-Erk1/2 protein expression, and immunofluorescence double-labeling technique was used to detect Erk1/2 and p-Erk1/2 co-expression with prodynorphin (PDYN). RESULTS: (1) All AIM scores of PD and PDE mice increased significantly (P < 0.05) with the prolongation of L-DOPA treatment. Compared with PD, all AIM scores were significantly lower in PDE mice (P < 0.05). (2) After 4 weeks, the motor function of PD mice was significantly reduced compared with Sham (P < 0.05 or P < 0.01); compared with PD, the motor function of PDE mice was significantly increased (P < 0.05). (3) Compared with Sham, the expression of Erk1/2 protein, the number of positive cells of Erk1/2 and p-Erk1/2 and the number of positive cells co-expressed with PDYN were significantly increased in PD mice (P < 0.05); compared with PD, Erk1/2 protein expression was significantly decreased in PDE mice (P < 0.05), and the number of Erk1/2 and p-Erk1/2 positive cells was significantly reduced (P < 0.05). CONCLUSION: 4 weeks of aerobic exercise can effectively alleviate the development of L-DOPA-induced dyskinesia and improve motor function in PD mice. The related mechanism may be related to the inhibition of striatal Erk/MAPK signaling pathway overactivation by aerobic exercise, but this change did not occur selectively in D1-MSNs.


Assuntos
Discinesia Induzida por Medicamentos , Exercício Físico , Doença de Parkinson , Animais , Masculino , Camundongos , Antiparkinsonianos/farmacologia , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/metabolismo , Levodopa , Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Oxidopamina/farmacologia , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...