Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(11): 18066-18078, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36221614

RESUMO

This study reported the effects of electron transport layer (ETL) thickness on light extraction in corrugated organic light-emitting diodes (OLEDs) and each layer in OLEDs exhibited a periodical corrugated structure, which was determined by depositing thin films on a glass substrate with a nanoimprinted blazed grating structure. The insight is that light extraction in corrugated OLEDs significantly depends on the ETL thickness. Varying the ETL thickness changed the distribution of carrier recombination and led to exciton formation and optical interference, thereby resulting in different attribution of optical loss modes in OLEDs, which increased or even decreased light extraction and device efficiency. Trapped light extraction from the surface plasmon polariton (SPP) and waveguide (WG) modes was identified by splitting the light into transverse electric and transverse magnetic emissions. Thus, the contributions from the individual SPP and WG modes to the external quantum efficiency (EQE) were distinctly clarified by comparing the experimental results with the theoretical calculations. At the ETL thickness of 115 nm, the corrugated OLED exhibited a significantly enhanced (1.83-fold) EQE compared to the planar one due to the effective extraction of trapped light from the SPP and WG modes. The EQE was enhanced by 0.5%, wherein 0.39% came from the WG mode and 0.11% came from the SPP mode.

2.
Nanomaterials (Basel) ; 11(4)2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33920386

RESUMO

In this paper, an inorganic polymer composite film is proposed as an effective radiative cooling device. The inherent absorption is enhanced by choosing an appropriately sized SiO2 microsphere with a diameter of 6 µm. The overall absorption at the transparent window of the atmosphere is higher than 90%, as the concentration of SiO2-PMMA composite is 35 wt%. As a result, an effective radiative device is made by a spin coating process. Moreover, the device is stacked on the cold side of a thermoelectric generator chip. It is found that the temperature gradient can be increased via the effective radiative cooling process. An enhanced Seebeck effect is observed, and the corresponding output current can be enhanced 1.67-fold via the photonic-assisted radiative cooling.

3.
Opt Express ; 27(8): A372-A384, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31052889

RESUMO

We report a corrugated structure to effectively extract the surface plasmon polaritons (SPP) and waveguiding modes in organic light-emitting diodes (OLEDs). This structure is formed by nano-imprint of blazed gratings. To study the optimum extraction condition in terms of grating pitches, we compare the light extraction efficiency of corrugated OLEDs with three kinds of pitches, showing a 42.00% external quantum efficiency (EQE) enhancement ratio with this internal structure. Due to the transfer of SPP and waveguiding modes into substrate mode, the EQE enhancement ratio can be further pushed to 103.02% by attaching a macrolens. The simulation verifies the experimental results and shows the extraction mechanism of the corrugated structure towards transverse electric (TE) and transverse magnetic (TM) waves. We foresee that this method is able to enhance the optical efficiency of devices for both mass-production OLED lighting and display in a cost-effective way.

4.
Nanoscale ; 8(6): 3565-71, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26804935

RESUMO

We synthesized Bi/Bi2O3 heterojunction nanoparticles at various substrate temperatures using the pulsed laser deposition (PLD) technique with a pulsed Nd:YAG laser. The Bi/Bi2O3 heterojunction nanoparticles consisted of Bi nanoparticles and Bi2O3 surface layers. The average diameter of the Bi nanoparticles and the thickness of the Bi2O3 surface layer are linearly proportional to the substrate temperature. The heterojunctions between the Bi nanoparticles and Bi2O3 surface layers, which are the metal-semiconductor heterojunctions, can strongly enhance the photoluminescence (PL) of the Bi/Bi2O3 nanoparticles, because the metallic Bi nanoparticles can provide massive free Fermi-level electrons for the electron transitions in the Bi2O3 surface layers. The enhancement of PL emission at room temperature by metal-semiconductor-heterojunctions make the Bi/Bi2O3 heterojunction nanoparticles potential candidates for use in optoelectronic nanodevices, such as light-emitting diodes (LEDs) and laser diodes (LDs).

5.
Org Lett ; 14(19): 4986-9, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22998101

RESUMO

Five rigid oxadiazole (OXD) containing silanes, denoted 1-5, have been developed with high morphological stability. Disruption of the π-aromatic conjugation by introduction of Si atoms leads to a large band gap and high triplet energy. Among the OXDs we studied, 2,5-bis(triphenylsilylphenyl)-1,3,4-oxadiazole 5 is the best host for FIrpic, with a phosphorescent organic light emitting diode (PHOLED) turn-on voltage of 6.9 V, maximum luminance of 5124 cd/m(2), current efficiency of 39.9 cd/A, and external quantum efficiency of 13.1%. Special molecular stacking in the single crystal of 5 was discussed.

6.
Opt Express ; 18(18): 18685-90, 2010 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-20940760

RESUMO

A pixel partition scheme assisted with patterned or center-hollowed microlens-array films (MAFs) was proposed to improve the optical characteristics and electrical properties of organic light-emitting diodes (OLEDs). In our optical simulation results, a pixel of 1 × 1 mm(2) with a center-hollowed MAF has a 42% luminance enhancement; however, after dividing the large pixel into ten by ten smaller pixels of 100 × 100 µm(2), the partitioned units with a corresponding center-hollowed MAF can have a 104% luminance enhancement under the same total active area and the same optical power of organic emitters. Furthermore, a significant 127% luminance enhancement by the introduction of a high-refractive-index substrate can be obtained.


Assuntos
Óptica e Fotônica , Simulação por Computador , Desenho de Equipamento , Fluorescência , Processamento de Imagem Assistida por Computador , Lentes , Luz , Refratometria
7.
Int J Mol Sci ; 11(4): 1527-45, 2010 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-20480033

RESUMO

In this paper, we review the emission characteristics from organic light-emitting diodes (OLEDs) and organic molecular thin films with planar and corrugated structures. In a planar thin film structure, light emission from OLEDs was strongly influenced by the interference effect. With suitable design of microcavity structure and layer thicknesses adjustment, optical characteristics can be engineered to achieve high optical intensity, suitable emission wavelength, and broad viewing angles. To increase the extraction efficiency from OLEDs and organic thin-films, corrugated structure with micro- and nano-scale were applied. Microstructures can effectively redirects the waveguiding light in the substrate outside the device. For nanostructures, it is also possible to couple out the organic and plasmonic modes, not only the substrate mode.


Assuntos
Lasers Semicondutores , Compostos Orgânicos/química , Eletrodos , Vidro/química , Iluminação , Compostos de Estanho/química
8.
Opt Express ; 18(4): 3238-43, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20389331

RESUMO

Taking organic emitter apodization calculated from electromagnetic theory as input, the angular luminance enhancement of a microlens-array-film (MAF) attached OLED (organic light-emitting device) can be further evaluated by ray-tracing approach. First, we assumed artificial emitters and revealed that not every OLED with MAF has luminance enhancement. Then, the OLEDs of different Alq(3) thickness were fabricated and their angular luminance measurement validated simulation results. Mode analyses for different layers were performed to estimate the enhancement potential of the MAF attached devices. In conclusion, the organic emitters with higher off-axis-angle luminous intensity cause lower out-coupling efficiency but gain higher enhancement after the MAF attached.


Assuntos
Lentes , Iluminação/instrumentação , Medições Luminescentes/instrumentação , Membranas Artificiais , Compostos Orgânicos/química , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização
9.
Opt Express ; 16(26): 21184-90, 2008 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-19104547

RESUMO

In this paper, cylindrical microlens arrays with two different alignments were proposed to be applied in a commercial mobile phone having an organic light-emitting diode (OLED) panel. It was found that the parallel-aligned cylindrical array had better performance than the vertical-aligned one for the OLED panel. The parallel-aligned cylindrical microlens array can increase the luminous current efficiency at surface normal and the luminous power efficiency of the OLED panel by 45% and 38%, respectively. Besides, it can also make the spectrum of the OLED panel more insensitive to the viewing angle. Though it can slightly blur the image on the OLED panel, the universal image quality index can be maintained at a level of 0.8630.

10.
Opt Express ; 16(15): 11044-51, 2008 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-18648418

RESUMO

In this paper, we experimentally and theoretically investigated the optical characteristics of organic light-emitting devices (OLEDs), having different pixel sizes and attached with patterned microlens array films. For a regular microlens array, though it can extract the waveguiding light and increase luminous current efficiency for a large-pixelated OLED, we observed that it decreases the luminance to an even lower level than that of the planar OLED as its pixel size is close to the microlens dimension. Although a microlens can effectively outcouple the light rays originally at incident angles larger than the critical angle, it also can impede the outcoupling for the light rays originally at incident angles smaller than the critical angle. Enhancement or reduction of the light extraction depends on the relative positions of the light emitting point and the microlens. Therefore, we proposed a center-hollowed microlens array, of which the microlenses directly upon the pixel are removed, and proved that it can increase the luminous current efficiency and luminous power efficiency of a small-pixelated OLED. By attaching this patterned microlens array, 87% of luminance enhancement in the normal direction was observed for a 0.1x0.1 mm2 OLED pixel. On the other hand, a regular microlens array resulted in 4% decrease under the same condition.


Assuntos
Desenho Assistido por Computador , Lentes , Iluminação/instrumentação , Compostos Orgânicos/química , Semicondutores , Desenho de Equipamento , Análise de Falha de Equipamento , Miniaturização
11.
Opt Express ; 12(23): 5777-82, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19488215

RESUMO

A method based on the variation of the area ratio of the base surface of microlenses to the light-emitting surface of the planar OLED device has been demonstrated. This method can evaluate the performance of microlens arrays with a desired geometrical shape on the improvement of the luminance efficiency for the planar light emitting devices. The maximum enhancement of the luminance efficiency of the devices in the studied microlens arrays is 56%. It is also found that the improvement of the luminance efficiency of the devices increases linearly with decreasing base length of the microlens array.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...