Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Biotechnol (NY) ; 11(1): 141-52, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18670809

RESUMO

Evidence suggests that the mitochondrial (mt)DNA of anthozoans is evolving at a slower tempo than their nuclear DNA; however, parallel surveys of nuclear and mitochondrial variations and calibrated rates of both synonymous and nonsynonymous substitutions across taxa are needed in order to support this scenario. We examined species of the scleractinian coral genus Acropora, including previously unstudied species, for molecular variations in protein-coding genes and noncoding regions of both nuclear and mt genomes. DNA sequences of a calmodulin (CaM)-encoding gene region containing three exons, two introns and a 411-bp mt intergenic spacer (IGS) spanning the cytochrome b (cytb) and NADH 2 genes, were obtained from 49 Acropora species. The molecular evolutionary rates of coding and noncoding regions in nuclear and mt genomes were compared in conjunction with published data, including mt cytochrome b, the control region, and nuclear Pax-C introns. Direct sequencing of the mtIGS revealed an average interspecific variation comparable to that seen in published data for mt cytb. The average interspecific variation of the nuclear genome was two to five times greater than that of the mt genome. Based on the calibration of the closure of Panama Isthmus (3.0 mya) and closure of the Tethy Seaway (12 mya), synonymous substitution rates ranged from 0.367% to 1.467% Ma(-1) for nuclear CaM, which is about 4.8 times faster than those of mt cytb (0.076-0.303% Ma(-1)). This is similar to the findings in plant genomes that the nuclear genome is evolving at least five times faster than those of mitochondrial counterparts.


Assuntos
Antozoários/genética , DNA/genética , Evolução Molecular , Genes Mitocondriais/genética , Genoma , Plantas/genética , Animais , Variação Genética , Filogenia
2.
J Mol Evol ; 66(4): 317-24, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18322634

RESUMO

Calmodulin (CaM), belonging to the tropinin C (TnC) superfamily, is one of the calcium-binding proteins that are highly conserved in their protein and gene structure. Based on the structure comparison among published vertebrate and invertebrate CaM, it is proposed that the ancestral form of eumetazoan CaM genes should have five exons and four introns (four-intron hypothesis). In this study, we determined the gene structure of CaM in the coral Acropora muricata, an anthozoan cnidarian representing the basal position in animal evolution. A CaM clone was isolated from a cDNA library constructed from the spawned eggs of A. muricata. This clone was composed of 908 nucleotides, including 162 base pairs (bp) of 5'-untranslated region (UTR), 296 bp of 3'-UTR, and an open reading frame 450 bp in length. The deduced amino acid indicated that the Acropora CaM protein is identical to that of the actiniarian, Metridinium senile, and has four putative calcium-binding domains highly similar to those of other vertebrate or invertebrate CaMs. Southern blot analysis revealed that Acropora CaM is a putative single-copy gene in the nuclear genome. Genomic sequencing showed that Acropora CaM was composed of five exons and four introns, with intron II not corresponding to any region in the actiniarian CaM gene, which possesses only four exons and three introns. Our results highlight that the coral CaM gene isolated from A. muricata has four introns at the predicted positions of the early metazoan CaM gene organization, providing the first evidence from the basal eumetazoan phylum to support the four-intron hypothesis.


Assuntos
Antozoários/genética , Calmodulina/genética , Evolução Molecular , Íntrons , Sequência de Aminoácidos , Animais , Sequência de Bases , Calmodulina/classificação , DNA Complementar/química , Éxons , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...