Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Technol Health Care ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38820040

RESUMO

BACKGROUND: Cardiovascular diseases remain a leading cause of global morbidity and mortality, with heart attacks and strokes representing significant health challenges. The accurate, early diagnosis and management of these conditions are paramount in improving patient outcomes. The specific disease, cardiovascular occlusions, has been chosen for the study due to the significant impact it has on public health. Cardiovascular diseases are a leading cause of mortality globally, and occlusions, which are blockages in the blood vessels, are a critical factor contributing to these conditions. OBJECTIVE: By focusing on cardiovascular occlusions, the study aims to leverage machine learning to improve the prediction and management of these events, potentially helping to reduce the incidence of heart attacks, strokes, and other related health issues. The use of machine learning in this context offers the promise of developing more accurate and timely interventions, thus improving patient outcomes. METHODS: We analyze diverse datasets to assess the efficacy of various machine learning algorithms in predicting heart attacks and strokes, comparing their performance to pinpoint the most accurate and reliable models. Additionally, we classify individuals by their predicted risk levels and examine key features that correlate with the incidence of cardiovascular events. The PyCaret machine learning library's Classification Module was key in developing predictive models which were evaluated with stratified cross-validation for reliable performance estimates. RESULTS: Our findings suggest that machine learning can significantly improve the prediction accuracy for heart attacks and strokes, facilitating earlier and more precise interventions. We also discuss the integration of machine learning models into clinical practice, addressing potential challenges and the need for healthcare professionals to interpret and apply these predictions effectively. CONCLUSIONS: The use of machine learning for risk stratification and the identification of modifiable factors may empower preemptive approaches to cardiovascular care, ultimately aiming to reduce the occurrence of life-threatening events and improve long-term patient health trajectories.

2.
Cureus ; 15(10): e46962, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38022246

RESUMO

Background It is estimated that around 450,000 traumatic brain injury cases have occurred in the 21st century with possible under-reporting. Computational simulations are increasingly used to study the pathophysiology of traumatic brain injuries among US military personnel. This approach allows for investigation without ethical concerns surrounding live subject testing. Methodology The pertinent data on head acceleration is applied to a detailed 3D model of a patient-specific head, which encompasses all significant components of the brain and its surrounding fluid. The use of finite element analysis and smoothed-particle hydrodynamics serves to replicate the interaction between these elements during discharge through simulation of their fluid-structure dynamics. Results The stress levels of the brain are assessed at varying time intervals subsequent to the explosion. The regions where there is an intersection between the skull and brain are observed, along with the predominant orientations in which displacement of the brain occurs resulting in a brain injury. Conclusions It has been determined that the cerebrospinal fluid is inadequate in preventing brain damage caused by multiple abrupt directional shifts of the head. Accordingly, additional research must be undertaken to enhance our comprehension of the injury mechanisms linked with consecutive changes in acceleration impacting the head.

3.
Injury ; 54(8): 110843, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37270348

RESUMO

INTRODUCTION: Pregnancy-related trauma is one of the leading causes of morbidity and mortality in pregnant women and fetuses. The fetal response to injury is largely dependent on the timing of fetal presentation and the underlying pathophysiology of the trauma. The optimal management of pregnant patients who have suffered an obstetric emergency depends on clinical assessment and understanding of the placental implantation process, which can be difficult to perform during an emergency. Understanding the mechanisms of traumatic injuries to the fetus is crucial for developing next-generation protective devices. METHODS: This study aimed to investigate the effect of amniotic fluid on mine blast on the uterus, fetus, and placenta via computational analysis. Finite element models were developed to analyze the effects of explosion forces on the uterus, fetus, and placenta, based on cadaveric data obtained from the literature. This study uses computational fluid-structure interaction simulations to study the effect of external loading on the fetus submerged in amniotic fluid inside of the uterus. RESULTS: Computational fluid-structure interaction simulations are used to study the effect of external loading on the fetus/placenta submerged in amniotic fluid inside the uterus. Cushioning function of the amniotic fluid on the fetus and placenta is demonstrated. The mechanism of traumatic injuries to the fetus/placenta is shown. DISCUSSION: The intention of this research is to understand the cushioning function of the amniotic fluid on the fetus. Further, it is important to make use of this knowledge in order to ensure the safety of pregnant women and their fetuses.


Assuntos
Militares , Placenta , Gravidez , Feminino , Humanos , Líquido Amniótico , Explosões , Útero/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...