Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi ; 32(6): 612-617, 2020 Jun 30.
Artigo em Chinês | MEDLINE | ID: mdl-33325196

RESUMO

OBJECTIVE: To investigate the drug-resistant gene polymorphisms in Plasmodium falciparum imported from Equatorial Guinea to Shandong Province. METHODS: From 2015 to 2016, blood samples were collected from imported P. falciparum malaria patients returning from Equatorial Guinea to Shandong Province, and genome DNA of the malaria parasite was extracted. The drug-resistant Pfcrt, Pfmdr1, Pfdhfr, Pfdhps, and K13 genes of P. falciparum were amplified using a PCR assay, followed by DNA sequencing, and the sequences were aligned. RESULTS: The target fragments of all 5 drug-resistant genes of P. falciparum were successfully amplified and sequenced. There were 72.8%, 18.6%, and 8.6% of P. falciparum parasites carrying the wild-, mutant-, and mixed-type Pfcrt gene, respectively, and all mutant haplotypes were CVIET (the underline indicates the mutation site). There were 20.0%, 61.4% and 18.6% of P. falciparum parasites carrying the wild-, mutant-, and mixed-type Pfmdr1 gene, respectively, and the mutant haplotypes mainly included YF and NF (the underlines indicate the mutation sites). There were 1.4%, 98.6%, and 0 of P. falciparum parasites carrying the wild-, mutant-, and mixed-type Pfdhfr gene, respectively, and AIRNI was the predominant mutant haplotype (the underline indicates the mutation site). There were 1.4%, 94.3%, and 4.3% of P. falciparum parasites carrying the wild-, mutant-, and mixed-type Pfdhps gene, respectively, and SGKAA was the predominant mutant haplotype (the underline indicates the mutation site). The complete drug-resistant IRNGE genotype consisted of 8.6% of the Pfdhfr and Pfdhps genes, and the K13 gene A578S mutation occurred in 1.4% of the parasite samples. CONCLUSIONS: There are mutations in the Pfcrt, Pfmdr1, Pfdhfr, Pfdhps, and K13 genes of P. falciparum imported from Equatorial Guinea to Shandong Province, with a low frequency in the Pfcrt gene mutation and a high frequency in the Pfmdr1, Pfdhfr, and Pfdhps gene mutations, and the K13 gene A578S mutation is detected in the parasite samples.


Assuntos
Antimaláricos , Resistência a Medicamentos/genética , Malária Falciparum , Plasmodium falciparum/genética , Proteínas de Protozoários , Antimaláricos/uso terapêutico , China/epidemiologia , DNA de Protozoário/genética , Guiné Equatorial/epidemiologia , Genótipo , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/epidemiologia , Mutação , Plasmodium falciparum/efeitos dos fármacos , Polimorfismo Genético/efeitos dos fármacos , Proteínas de Protozoários/genética
2.
J Food Prot ; 64(7): 987-93, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11456208

RESUMO

Mathematical models that can predict the growth of Yersinia enterocolitica in chicken meats were evaluated in this study. The growth curves for Y. enterocolitica in chicken meats variously packaged (air, vacuum, and modified atmosphere packaging [MAP]) and stored at various temperatures (4, 10, 16, 22, 28, and 34 degrees C) were constructed. The Gompertz model was applied to fit each of the experimental curves for the conditions mentioned above. The variations in the parameters, including lag time (lambda) and specific growth rate (mu), at various temperatures were then described by the following models: the variations in lag time were described by the Adair and Smith models and the variations in the specific growth rate were described by the Ratkowsky and Zwietering models. The various models were then compared using graphical and mathematical analyses such as mean square error (MSE), regression coefficient (r2), bias factor, and accuracy factor. The results indicate that the mean r values in the Gompertz model for chicken meats packaged in air, vacuum, and MAP were 0.99, 0.99, and 0.95, respectively. The lag time modeled with the Adair and Smith functions exhibited a greater variance and demonstrated larger errors. The MSEs were 0.0015 and 0.0017 for Ratkowsky and Zwietering models, respectively. The r2 values in the Ratkowsky and Zwietering models were both 0.99. The bias factor was 1.017 for the Ratkowsky model and 1.096 for the Zwietering model. The accuracy factor of the Zwietering model was 1.174, which was lower than that in the Ratkowsky model (1.275), indicating that the former model was more accurate than the latter in predicting the specific growth rate of Y. enterocolitica in chicken meats.


Assuntos
Dióxido de Carbono/farmacologia , Embalagem de Alimentos/métodos , Produtos da Carne/microbiologia , Carne/microbiologia , Oxigênio/farmacologia , Yersinia enterocolitica/crescimento & desenvolvimento , Animais , Galinhas , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Modelos Biológicos , Modelos Teóricos , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Temperatura , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...