Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Vet Sci ; 9: 946906, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36157193

RESUMO

The ruminant gut microbial community has a strong impact on host health and can be altered during diarrhea disease. As an indigenous breed of the Tibetan Plateau, domestic yak displays a high diarrhea rate, but little research has been done to characterize the bacterial microbial structure in diarrheic yaks. In the present study, a total of 30 adult yaks, assigned to diarrhea (case, N = 15) and healthy (control, N = 15) groups, were subjected to gut microbiota profiling using the V3-V4 regions of the 16S rRNA gene. The results showed that the gut microbiome of the case group had a significant decrease in alpha diversity. Additionally, differences in beta diversity were consistently observed for the case and control groups, indicating that the microbial community structure was changed due to diarrhea. Bacterial taxonomic analysis indicated that the Bacteroidetes, Firmicutes, and Proteobacteria were the three most dominant phyla in both groups but different in relative abundance. Especially, the proportion of Proteobacteria in the case group was increased as compared with the control group, whereas Spirochaetota and Firmicutes were significantly decreased. At the genus level, the relative abundance of Escherichia-Shigella and Prevotellaceae_UCG-003 were dramatically increased, whereas that of Treponema, p-2534-18B5_gut_group, and Prevotellaceae_UCG-001 were observably decreased with the effect of diarrhea. Furthermore, based on our linear discriminant analysis (LDA) effect size (LEfSe) results, Alistipes, Solibacillus, Bacteroides, Prevotellaceae_UCG_003, and Bacillus were significantly enriched in the case group, while the other five genera, such as Alloprevotella, RF39, Muribaculaceae, Treponema, and Enterococcus, were the most preponderant in the control group. In conclusion, alterations in gut microbiota community composition were associated with yak diarrhea, differentially represented bacterial species enriched in case animals providing a theoretical basis for establishing a prevention and treatment system for yak diarrhea.

2.
Cell Mol Life Sci ; 79(4): 209, 2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35347428

RESUMO

RNase2 is the member of the RNaseA family most abundant in macrophages. Here, we knocked out RNase2 in THP-1 cells and analysed the response to Respiratory Syncytial Virus (RSV). RSV induced RNase2 expression, which significantly enhanced cell survival. Next, by cP-RNAseq sequencing, which amplifies the cyclic-phosphate endonuclease products, we analysed the ncRNA population. Among the ncRNAs accumulated in WT vs KO cells, we found mostly tRNA-derived fragments (tRFs) and second miRNAs. Differential sequence coverage identified tRFs from only few parental tRNAs, revealing a predominant cleavage at anticodon and D-loops at U/C (B1) and A (B2) sites. Selective tRNA cleavage was confirmed in vitro using the recombinant protein. Likewise, only few miRNAs were significantly more abundant in WT vs RNase2-KO cells. Complementarily, by screening of a tRF & tiRNA array, we identified an enriched population associated to RNase2 expression and RSV exposure. The results confirm the protein antiviral action and provide the first evidence of its cleavage selectivity on ncRNAs.


Assuntos
Antivirais , RNA não Traduzido , Anticódon , Antivirais/farmacologia , Macrófagos/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo , RNA não Traduzido/genética
3.
Gigascience ; 10(9)2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34555848

RESUMO

BACKGROUND: The microbiota of the female reproductive tract is increasingly recognized as playing fundamental roles in animal reproduction. To explore the relative contribution of reproductive tract microbiomes to egg production in chickens, we investigated the microbiota in multiple reproductive and digestive tract sites from 128 female layer (egg-producing) chickens in comparable environments. RESULTS: We identified substantial differences between the diversity, composition, and predicted function of site-associated microbiota. Differences in reproductive tract microbiota were more strongly associated with egg production than those in the digestive tract. We identified 4 reproductive tract microbial species, Bacteroides fragilis, Bacteroides salanitronis, Bacteroides barnesiae, and Clostridium leptum, that were related to immune function and potentially contribute to enhanced egg production. CONCLUSIONS: These findings provide insights into the diverse microbiota characteristics of reproductive and digestive tracts and may help in designing strategies for controlling and manipulating chicken reproductive tract microbiota to improve egg production.


Assuntos
Galinhas , Microbiota , Animais , Feminino , Trato Gastrointestinal
5.
Antibiotics (Basel) ; 10(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498280

RESUMO

Tuberculosis (TB) is still a leading cause of death worldwide. Treatments remain unsatisfactory due to an incomplete understanding of the underlying host-pathogen interactions during infection. In the present study, weighted gene co-expression network analysis (WGCNA) was conducted to identify key macrophage modules and hub genes associated with mycobacterial infection. WGCNA was performed combining our own transcriptomic results using Mycobacterium aurum-infected human monocytic macrophages (THP1) with publicly accessible datasets obtained from three types of macrophages infected with seven different mycobacterial strains in various one-to-one combinations. A hierarchical clustering tree of 11,533 genes was built from 198 samples, and 47 distinct modules were revealed. We identified a module, consisting of 226 genes, which represented the common response of host macrophages to different mycobacterial infections that showed significant enrichment in innate immune stimulation, bacterial pattern recognition, and leukocyte chemotaxis. Moreover, by network analysis applied to the 74 genes with the best correlation with mycobacteria infection, we identified the top 10 hub-connecting genes: NAMPT, IRAK2, SOCS3, PTGS2, CCL20, IL1B, ZC3H12A, ABTB2, GFPT2, and ELOVL7. Interestingly, apart from the well-known Toll-like receptor and inflammation-associated genes, other genes may serve as novel TB diagnosis markers and potential therapeutic targets.

6.
Cell Mol Life Sci ; 78(6): 2963-2985, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33226440

RESUMO

The human RNase3 is a member of the RNaseA superfamily involved in host immunity. RNase3 is expressed by leukocytes and shows broad-spectrum antimicrobial activity. Together with a direct antimicrobial action, RNase3 exhibits immunomodulatory properties. Here, we have analysed the transcriptome of macrophages exposed to the wild-type protein and a catalytic-defective mutant (RNase3-H15A). The analysis of differently expressed genes (DEGs) in treated THP1-derived macrophages highlighted a common pro-inflammatory "core-response" independent of the protein ribonucleolytic activity. Network analysis identified the epidermal growth factor receptor (EGFR) as the main central regulatory protein. Expression of selected DEGs and MAPK phosphorylation were inhibited by an anti-EGFR antibody. Structural analysis suggested that RNase3 activates the EGFR pathway by direct interaction with the receptor. Besides, we identified a subset of DEGs related to the protein ribonucleolytic activity, characteristic of virus infection response. Transcriptome analysis revealed an early pro-inflammatory response, not associated to the protein catalytic activity, followed by a late activation in a ribonucleolytic-dependent manner. Next, we demonstrated that overexpression of macrophage endogenous RNase3 protects the cells against infection by Mycobacterium aurum and the human respiratory syncytial virus. Comparison of cell infection profiles in the presence of Erlotinib, an EGFR inhibitor, revealed that the receptor activation is required for the antibacterial but not for the antiviral protein action. Moreover, the DEGs related and unrelated to the protein catalytic activity are associated to the immune response to bacterial and viral infection, respectively. We conclude that RNase3 modulates the macrophage defence against infection in both catalytic-dependent and independent manners.


Assuntos
Proteína Catiônica de Eosinófilo/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Regulação para Baixo , Proteína Catiônica de Eosinófilo/química , Proteína Catiônica de Eosinófilo/genética , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Humanos , Imunidade Inata , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/virologia , Mutagênese Sítio-Dirigida , Mycobacteriaceae/efeitos dos fármacos , Mycobacteriaceae/fisiologia , Mapas de Interação de Proteínas , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Vírus Sincicial Respiratório Humano/fisiologia , Alinhamento de Sequência , Transdução de Sinais , Transcriptoma , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...