Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 324(2): C222-C235, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36622073

RESUMO

This study investigates the mechanism by which microRNA (miR)-30e-3p reduces coronary microembolism (CME)-induced cardiomyocyte pyroptosis and inflammation. Cardiac function tests, histological staining, and transmission electron microscopy were performed on CME-model rats injected with adeno-associated viral vectors. Cardiomyocytes were transfected 24 h before a cellular model of pyroptosis was established via treatment with 1 µg/mL lipopolysaccharide (LPS) for 4 h and 5 mM ATP for 30 min. Pyroptosis, inflammation, and Wnt/ß-catenin signaling in cardiomyocytes were detected. Dual-luciferase reporter assays and/or RNA pull-down assays were performed to verify the binding of miR-30e-3p to HDAC2 mRNA or HDAC2 to the SMAD7 promoter. Chromatin immunoprecipitation was used to assess the level of H3K27 acetylation at the SMAD7 promoter. miR-30e-3p and SMAD7 expression levels were downregulated and HDAC2 expression was upregulated with CME. The overexpression of miR-30e-3p restored cardiac functions in CME-model rats and reduced serum cTnI, IL-18, and IL-1ß levels, microinfarcts, inflammatory cell infiltration, apoptosis, collagen content, and GSDMD-N, cleaved caspase-1, and NLRP3 expression in the myocardium, but these effects were reversed by SMAD7 knockdown. The overexpression of miR-30e-3p or knockdown of HDAC2 reduced LDH, IL-18, and IL-1ß secretion, propidium iodide intake, and GSDMD-N, NLRP3, cleaved caspase-1, Wnt3a, Wnt5a, and ß-catenin expression in the cardiomyocyte model. miR-30e-3p inhibited the expression of HDAC2 by binding HDAC2 mRNA. HDAC2 repressed the expression of SMAD7 by catalyzing H3K27 deacetylation at the SMAD7 promoter. miR-30e-3p, by binding HDAC2 to promote SMAD7 expression, reduces CME-induced cardiomyocyte pyroptosis and inflammation.


Assuntos
MicroRNAs , Miócitos Cardíacos , Ratos , Animais , Miócitos Cardíacos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Interleucina-18/metabolismo , beta Catenina/metabolismo , Piroptose/genética , Inflamação , RNA Mensageiro , Caspases/metabolismo , Proteína Smad7/genética , Proteína Smad7/metabolismo , Histona Desacetilase 2/genética
2.
Front Endocrinol (Lausanne) ; 13: 1004284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36157436

RESUMO

Scoparone (SCO) is known to have curative effect of alleviating liver injury. The purpose of this study was to observe the therapeutic effect and possible mechanism of SCO against high-fat diet (HFD) induced non-alcoholic liver disease (NAFLD) through in vivo experiments and RNA sequencing. Male Kunming mice were fed with HFD for 8 weeks to establish a mouse model of NAFLD, and SCO was used to treat NAFLD. Histopathology and biochemical indicators were used to evaluate the liver injury and the efficacy of SCO. RNA sequencing analysis was performed to elucidate the hepatoprotective mechanism of SCO. Finally, the differentially expressed genes of cholesterol synthesis and fatty acid (triglyceride) synthesis pathways were verified by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. The histopathological results showed that HFD could lead to significant steatosis in mice, while SCO could alleviate liver steatosis remarkably in NAFLD mice. The determination of biochemical indicators showed that SCO could inhibit the increased serum transaminase activity and liver lipid level induced by HFD. RNA sequencing analysis of liver tissues found that 2742 and 3663 genes were significantly changed by HFD and SCO, respectively. SCO reversed the most of genes involved in cholesterol synthesis and fatty acid (triglyceride) metabolism induced by HFD. the results of the validation experiment were mostly consistent with the RNA sequencing. SCO alleviated liver injury and steatosis in NAFLD mice, which may be closely related to the regulation of cholesterol and fatty acid (triglyceride) metabolism.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Cumarínicos , Ácidos Graxos , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Análise de Sequência de RNA , Transaminases/uso terapêutico , Triglicerídeos/metabolismo
3.
Oxid Med Cell Longev ; 2022: 8585598, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720178

RESUMO

Osthole is a natural coumarin which has been proved to inhibit growth of cancer cells by inducing cell death, while its mechanism was considered to be just caused by apoptosis. In our study, we found that osthole activated not just apoptosis, but also pyroptosis which is a form of regulated cell death accompanied by loss of cell membrane integrity and lactate dehydrogenase (LDH) release. Caspase-3 is a key protein of apoptosis as well as pyroptosis. The apoptosis and pyroptosis induced by osthole were all inhibited by irreversible caspase-3 inhibitor Z-DEVD-FMK. Meanwhile, knockdown of gasdermin E (GSDME) only reduced the osthole-induced pyroptosis but did not affect the occurrence of apoptosis. Our proteomic analysis revealed that the expression of NAD(P)H: quinone oxidoreductase 1 (NQO1) was decreased in osthole-treated cells. Moreover, NQO1 inhibition by osthole induced the overproduction of reactive oxygen species (ROS), as well as apoptosis and pyroptosis. ROS inhibitor N-Acetyl-L-cysteine (NAC) not only reduced osthole-induced apoptosis but also reversed its effect on the pyroptosis. Meanwhile, knockdown of NQO1 by si-NQO1 or its inhibitor dicoumarol (DIC) not only enhanced ROS generation but also strengthened the GSDME-mediated pyroptosis. Finally, we demonstrated that osthole inhibited tumor growth and the expression of NQO1 in a HeLa xenograft mode. Similar to the results in vitro, osthole stimulated the activation of caspase-3, PARP, and GSDME in vivo. Taken together, all these data suggested that osthole induced apoptosis and caspase-3/GSDME-mediated pyroptosis via NQO1-mediated ROS accumulation.


Assuntos
Proteômica , Piroptose , Apoptose , Caspase 3/metabolismo , Linhagem Celular Tumoral , Cumarínicos/farmacologia , Células HeLa , Humanos , NAD(P)H Desidrogenase (Quinona) , Espécies Reativas de Oxigênio/metabolismo , Receptores de Estrogênio/metabolismo
4.
J Mol Med (Berl) ; 100(5): 763-780, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35414011

RESUMO

This study aims to explore the mechanism underlying miR-142-3p regulating myocardial injury induced by coronary microembolization (CME) through ATXN1L. miR-142-3p overexpression or ATXN1L knockout adenovirus vectors were injected into rats before CME treatment. Cardiac functions were examined by echocardiography, and pathologies of myocardial tissues were assessed. Then, serum cTnI and IL-1ß contents and concentrations of IL-1ß and IL-18 in cell supernatant were measured. Immunofluorescence determined the localization of histone deacetylase 3 (HDAC3). The interaction between miR-142-3p and ATXN1L as well as the binding between HDAC3 and histone 3 (H3) was identified. The binding of ATXN1L and HDAC3 to NOL3 promoter was verified using ChIP. The levels of ATXN1L, NOL3, and miR-142-3p as well as apoptosis- and pyroptosis-related proteins and acetyl-histone 3 (ac-H3) were evaluated. CME treatment impaired the cardiac functions in rats and increased cTnI content. CME rats showed microinfarction foci in myocardial tissues. After CME treatment, miR-142-3p and NOL3 were modestly expressed while ATXN1L content was elevated, in addition to increases in apoptosis and pyroptosis. miR-142-3p overexpression or ATXN1L knockout alleviated CME-induced myocardial injury, cardiomyocyte apoptosis, and pyroptosis in myocardial tissues. miR-142-3p regulated ATXN1L expression in a targeted manner. In the cellular context, miR-142-3p overexpression attenuated apoptosis and pyroptosis in cardiomyocytes, which was partly counteracted by ATXN1L overexpression. ATXN1L functioned on cardiomyocytes by promoting deacetylation of H3 through HDAC3 and thus inhibited NOL3 expression. Inhibition of HDAC3 or overexpression of NOL3 ameliorated the promotive effects of ATXN1L on cardiomyocyte apoptosis and pyroptosis. In vivo and in vitro evidence in this study supported that miR-142-3p could attenuate CME-induced myocardial injury via ATXN1L/HDAC3/NOL3. HIGHLIGHTS: CME model witnessed aberrant expression of miR-142-3p, ATXN1L, and NOL3; miR-142-3p negatively regulated ATXN1L; miR-142-3p mediated CME-induced myocardial injury through ATXN1L; ATXN1L promoted deacetylation of H3 through HDAC3 and thus inhibited NOL3 expression; ATXN1L acted on cardiomyocyte apoptosis and pyroptosis through HDAC3/NOL3 axis.


Assuntos
MicroRNAs , Animais , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Piroptose , Ratos
5.
Apoptosis ; 27(3-4): 206-221, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35084609

RESUMO

This study investigated how miR-136-5p partially affected cardiomyocyte pyroptosis in rats with coronary microembolization (CME). The cardiac function and structure of rats with CME were evaluated using echocardiography, hematoxylin and eosin staining, Masson staining, and troponin I level. Pyroptosis was induced by lipopolysaccharide (LPS) in isolated rat cardiomyocytes and evaluated by the expression of caspase-1, NOD-like receptor family pyrin domain-containing 3, interleukin-1ß, and gasdermin D-N. After cell transfection, the expression of Ataxin-1 like (ATXN1L), pyrin domain-containing 1 (PYDC1), and pyroptosis-related proteins was assessed. Dual-luciferase reporter and immunoprecipitation assays were used to verify the relationships among miR-136-5p, ATXN1L, and capicua (CIC). MiR-136-5p was under-expressed, whereas ATXN1L was overexpressed in rats with CME and in LPS-treated primary cardiomyocytes. MiR-136-5p targeted ATXN1L, and ATXN1L bound to CIC to suppress PYDC1 expression. MiR-136-5p overexpression suppressed pyroptosis by inhibiting the binding of ATXN1L with CIC and promoting PYDC1 expression, which was reversed by simultaneous elevation of ATXN1L. In conclusion, miR-136-5p suppressed pyroptosis by upregulating PYDC1 via ATXN1L/CIC axis, thereby attenuating cardiac damage caused by CME.


Assuntos
MicroRNAs , Piroptose , Animais , Apoptose , Lipopolissacarídeos , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Piroptose/genética , Ratos
6.
Altern Ther Health Med ; 28(3): 34-41, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33128532

RESUMO

Marchantia polymorpha L. (MPL), a common type of liverwort, has been used as herbal medicine to improve liver function in China for many years. Although modern studies revealed that MPL contains various polyphenols, terpenoids, and bis[bibenzyls], its biological effects on liver function have never been systemically studied in any animal model. In this study, flavonoids were extracted from MPL and the components in the MPL flavonoids as well as the antioxidant capacity of MPL flavonoids were analysed. A rat model of liver injury was induced by intraperitoneal injection of 10% carbon tetrachloride (CCl4). MPL flavonoids were administered daily at a dose of 50, 100, and 200 mg/kg body weight to the rats for 2 weeks prior to injection of CC14. Treatment with MPL flavonoids, especially at a dose of 200 mg/kg, attenuated CCl4-induced increases in alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, γ-glutamyl transpeptidase, nitric oxide, malondialdehyde, tumour necrosis factor-α, interleukin-1ß, and interleukin-6, as well as reductions in superoxide dismutase and glutathione peroxidase. Microarray analyses showed that co-treatment with MPL flavonoids and CCl4 up-regulated many antioxidant and anti-apoptotic genes, but down-regulated several pro-inflammatory genes, compared to treatment with CCl4 alone. PCR and western blot assays further identified that MPL flavonoids increased GPX1, TMX1, TXN, and XIAP expression, but decreased IL-1 and IL1RAP expression and inhibited Jak/stat3 signalling. In conclusion, MPL flavonoids exerted hepatoprotective effects via antioxidant and gene regulatory mechanisms. (Altern Ther Health Med.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Marchantia , Animais , Antioxidantes/farmacologia , Tetracloreto de Carbono/metabolismo , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Flavonoides/metabolismo , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , Fígado , Marchantia/metabolismo , Estresse Oxidativo , Extratos Vegetais/uso terapêutico , Ratos
7.
FEBS Open Bio ; 11(2): 456-467, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33350608

RESUMO

Glioma is a common primary malignant tumor that has a poor prognosis and often develops drug resistance. The coumarin derivative osthole has previously been reported to induce cancer cell apoptosis. Recently, we found that it could also trigger glioma cell necroptosis, a type of cell death that is usually accompanied with reactive oxygen species (ROS) production. However, the relationship between ROS production and necroptosis induced by osthole has not been fully elucidated. In this study, we found that osthole could induce necroptosis of glioma cell lines U87 and C6; such cell death was distinct from apoptosis induced by MG-132. Expression of necroptosis inhibitor caspase-8 was decreased, and levels of necroptosis proteins receptor-interacting protein 1 (RIP1), RIP3 and mixed lineage kinase domain-like protein were increased in U87 and C6 cells after treatment with osthole, whereas levels of apoptosis-related proteins caspase-3, caspase-7, and caspase-9 were not increased. Lactate dehydrogenase release and flow cytometry assays confirmed that cell death induced by osthole was primarily necrosis. In addition, necroptosis induced by osthole was accompanied by excessive production of ROS, as observed for other necroptosis-inducing reagents. Pretreatment with the RIP1 inhibitor necrostatin-1 attenuated both osthole-induced necroptosis and the production of ROS in U87 cells. Furthermore, the ROS inhibitor N-acetylcysteine decreased osthole-induced necroptosis and growth inhibition. Overall, these findings suggest that osthole induces necroptosis of glioma cells via ROS production and thus may have potential for development into a therapeutic drug for glioma therapy.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Cumarínicos/farmacologia , Glioma/tratamento farmacológico , Necroptose/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Cumarínicos/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Glioma/patologia , Humanos , Leupeptinas/farmacologia , Leupeptinas/uso terapêutico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia
8.
Biomed Pharmacother ; 134: 111159, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33370627

RESUMO

The purpose of this study is to use Dicliptera chinensis (L.) Juss (Acanthaceae) polysaccharide (DCP) to act on the NF-κB inflammatory pathway and Fas/FasL ligand system, in order to find a new method to improve immune liver injury. Lipopolysaccharide (LPS) was used to establish an injury model in vivo (Kunming mice) and in vitro (LO2 cells). In this experiment, hematoxylin-eosin (H&E) staining and related biochemical indicators were used to observe the pathological changes of liver tissues, oxidative stress and inflammatory reactions. Immunohistochemistry, ELISA, RT-PCR and Western blot were used to detect protein or mRNA expressions associated with inflammation response and apoptosis. The experimental results show that the model group has obvious liver cell damage and inflammatory infiltration. After DCP intervention, it could significantly reduce the levels of ALT, AST, ALP, TBIL and MDA in serum, and increase the content of SOD and GSH-Px. In addition, DCP can reduce the expression level of NF-κB in the liver and reduce the release of downstream inflammatory factors TNF-α, IL-6 and IL-1ß, thereby reducing the inflammation. At the same time, DCP can significantly inhibit the expression of Fas/FasL ligand system and apoptosis related-proteins and mRNA, which in turn can reduce cell apoptosis. In conclusion, DCP can alleviate liver injury by inhibiting liver inflammation and apoptosis, which provides a new strategy for clinical treatment of immune liver injury.


Assuntos
Acanthaceae , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Mediadores da Inflamação/metabolismo , Fígado/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polissacarídeos/farmacologia , Acanthaceae/química , Animais , Anti-Inflamatórios/isolamento & purificação , Linhagem Celular , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Proteína Ligante Fas/genética , Proteína Ligante Fas/metabolismo , Lipopolissacarídeos , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/isolamento & purificação , Polissacarídeos/isolamento & purificação , Transdução de Sinais , Receptor fas/genética , Receptor fas/metabolismo
9.
Life Sci ; 262: 118546, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33035580

RESUMO

Studies have reported that taraxasterol (TAR) is effective in the treatment of immune liver injury and alcoholic liver injury. The mechanism of action is mainly related to the inhibition of inflammation. To determine the key molecular mechanisms for the effect of TAR on alleviating ethanol and high-fat diet-induced liver injury, pathological morphology, biochemistry, oxidative stress, inflammatory response and lipid metabolism were examined. Our results showed that TAR could inhibit ethanol-induced hepatocyte death or lipid accumulation, and suppress oxidative stress, inflammatory response and lipid metabolism disorders. More specifically, ethanol-induced TLR-4 and MyD88 inflammatory response were down-regulated, when treated with TAR. Production of CYP2E1, Nrf2 and HO-1, which produced in response to increased oxidative stress, were regulated in TAR treated, ethanol-induced hepatocytes. In summary, TAR could inhibit the inflammatory response and oxidative stress, which was related to the regulation of TAR on TLR-4/MyD88/NF-κB and Nrf2/HO-1 pathways.


Assuntos
Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Esteróis/farmacologia , Triterpenos/farmacologia , Animais , Dieta Hiperlipídica/efeitos adversos , Etanol/toxicidade , Heme Oxigenase-1/metabolismo , Inflamação/prevenção & controle , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
10.
J Cell Physiol ; 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33090488

RESUMO

The aim of this study was to investigate the role of scoparone (SCO) in hepatic fibrosis. For this, we conducted in vivo and in vitro experiments. In vivo rats that were divided into six groups, control, carbon tetrachloride, and colchicine, as well as SCO groups, SCO50, SCO100, and SCO200 treated with 50, 100, and 200 mg/kg SCO doses, respectively. Furthermore, SCO was shown to inhibit Toll-like receptor-4 (TLR-4)/nuclear factor kappa-B (NF-κB; TLR-4/NF-κB) signals by inhibiting TLR-4, which in turn downregulates the expression of MyD88, promotes NF-κB inhibitor-α, NF-κB inhibitor-ß, and NF-κB inhibitor-ε activation, while inhibiting NF-κB inhibitor-ζ. Subsequently, the decrease of phosphorylation of nuclear factor-κB levels leads to the downregulation of the downstream inflammatory factors' tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and IL-1 beta, thus weakening hepatic fibrosis. Notably, the SCO200 treated group presented the most significant improvement. Hence, we conclude that SCO alleviates hepatic fibrosis by inhibiting TLR-4/NF-κB signals.

11.
J Cell Mol Med ; 24(11): 6397-6409, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32337831

RESUMO

The purpose of this study was to alleviate liver disturbance by applying polysaccharides from Dicliptera chinensis (DCP) to act on the adenosine monophosphate-activated protein kinase/ nuclear factor erythroid 2-related factor 2 (AMPK/ Nrf2) oxidative stress pathway and the Toll-like receptor 4 (TLR-4)/ nuclear factor kappa-B (NF-κB) inflammatory pathway and to establish an in vivo liver disturbance model using male C57BL/6J and TLR-4 knockout (-/- ) mice. For this, we evaluated the expression levels of SREBP-1 and Nrf2 after silencing the expression of AMPK using siRNA technology. Our results show that with regard to the TLR-4/ NF-κB inflammatory pathway, DCP inhibits TLR-4, up-regulates the expression of peroxisome proliferator-activated receptor-γ (PPAR-γ), reduces the expression of phospho(p)-NF-κB and leads to the reduction of downstream inflammatory factors, such as tumour necrosis factor-α (TNF-α), interleukin (IL)-6 and IL-1ß, thereby inhibiting the inflammatory response. Regarding the AMPK/ Nrf2 oxidative stress pathway, DCP up-regulates the expression of p-AMPK and Nrf2, in addition to regulating glucose and lipid metabolism, oxidative stress and ameliorating liver disturbance symptoms. In summary, our study shows that DCP alleviates liver disturbances by inhibiting mechanisms used during liver inflammation and oxidative stress depression, which provides a new strategy for the clinical treatment of liver disturbance.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Acanthaceae/química , Fígado/patologia , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Polissacarídeos/farmacologia , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Animais , Células Hep G2 , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
12.
Open Life Sci ; 15(1): 311-317, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33817219

RESUMO

The aims of this study were to investigate the effect of hepatic sympathetic nerve removal on glucose and lipid metabolism in rats with cognitive impairment and to evaluate the relationship between these effects and liver Glut2 expression. Hippocampal injection of Aß1-42 was used to induce cognitive impairment. Impaired rats were divided into experimental, sham, and control groups. The experimental group was injected with 6-hydroxydopamine to remove the sympathetic nerve. At 4 weeks post injection, body weight, food and water intake, blood sugar, and blood lipids were measured, and periodic acid-Schiff (PAS) staining was used to assess the liver glycogen content. Liver Glut2 mRNA and protein were also detected. The experimental group showed reduced body weight, food intake, and blood glucose levels and elevated insulin levels compared with the control group. PAS staining showed higher glycogen contents in the experimental group than in controls. The expression levels of Glut2 mRNA and protein in the experimental group were significantly lower than in the controls. Metabolism was significantly impacted in rats with cognitive impairment following removal of the hepatic sympathetic nerve. Disruption to Glut2 liver expression via sympathetic nerve disruption represents a possible underlying mechanism.

13.
Diseases ; 7(3)2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31409055

RESUMO

Infection with Echinococcus spp. causes fibrosis in various vital organs, including the liver and lungs. Hepatic fibrosis is a pathological feature of Echinococcus infection that destroys normal liver tissue, leading to jaundice, cholecystitis, portal hypertension, etc. Severe Echinococcus multilocularis infections lead to liver failure and hepatic encephalopathy. The formation of peripheral fiberboards around the metacestode is a major reason as to why antiparasitic drugs fail to be effectively transported to the lesion site. Studies on the mechanism of hepatic fibrosis caused by Echinococcus are important for treatment in patients. Recent studies have focused on miRNA and TGF-ß. More recent findings have focused on the generation of collagen fibers around the metacestode. In this review paper we focus on the mechanism by which the Echinococcus parasite induces fibrosis in liver and some other organs in intermediate hosts-animals as well as human beings.

14.
J Cell Physiol ; 234(8): 13145-13156, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30584667

RESUMO

OBJECTIVES: In our research, we aimed to investigate the roles of CC-chemokine receptor 7 (CCR7) and relevant signaling pathways in Leishmania major-infected human dendritic cells (DCs). METHODS: Differentially expressed genes (DEGs) in L. major-infected human DCs were selected out and visualized using R program. Kyoto Encyclopedia of Genes and Genomes pathway analysis was conducted for investigation of significantly enriched signaling pathways and Gene Ontology enrichment analysis was carried out for the unveiling of enriched Molecular Functions and Biological Processes in L. major-infected human DCs. Besides, Hub gene was screened out using weighted gene coexpression network analysis and Cytoscape. In addition, enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction were used for detection of relative expression of CCR7, interleukin-12 (IL-12), and interferon-γ (IFN-γ) in L. major-infected human DCs and western blot analysis was used for detection of relative expression of CCR7 and other proteins in JAK-STAT signaling pathway in L. major-infected human DCs. RESULTS: CCR7 was upregulated and both chemokine and JAK-STAT signaling pathway were activated in L. major-infected human DCs. During the L. major infection, total number of L. major-infected human DCs were increased, as well as the relative expression levels of CCR7, IL-12, and IFN-γ and proteins in the JAK-STAT signaling pathway. Overexpression of CCR7 not only increased expression levels of IL-12 and IFN-γ but also activated the JAK-STAT signaling pathway to affect the leishmaniasis progression. CONCLUSION: L. major infection-induced activation of CCR7, as well as JAK2 and STAT1, might well upregulate the expression of BAX yet suppress the expression of both Bcl2 and c-Jun to affect leishmaniasis progression.


Assuntos
Células Dendríticas/metabolismo , Leishmaniose Cutânea/metabolismo , Receptores CCR7/metabolismo , Transdução de Sinais/fisiologia , Células Dendríticas/imunologia , Humanos , Janus Quinases/imunologia , Janus Quinases/metabolismo , Leishmania major , Leishmaniose Cutânea/imunologia , Receptores CCR7/imunologia , Fatores de Transcrição STAT/imunologia , Fatores de Transcrição STAT/metabolismo
15.
Exp Ther Med ; 14(5): 4181-4193, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29104634

RESUMO

Nicotinamide phosphoribosyltransferase (Nampt) is a key enzyme in the nicotinamide adenine dinucleotide (NAD+) biosynthetic pathway. Exogenous extra cellular Nampt has been reported to increase the synthesis of pro-fibrotic molecules in various types of renal cells. However, the role of endogenous Namptenzymatic activity in diabetic renal cells, particularly those associated with inflammation and fibrosis through the nuclear factor (NF)-κB p65 and sirtuin 1 (Sirt1) pathway is still unknown. In the present study, a possible mechanism by which endogenous Nampt upregulation affects the expression of pro-inflammatory and pro-fibrotic cytokines in vivo and in vitro, is reported. The present results demonstrate that the expression of vimentin and fibronectin was directly implicated in endogenous Nampt upregulation. The expression levels of Poly(ADP-ribose) polymerase-1, NF-κB p65, forkhead box protein O1 and B-cell lymphoma 2-like protein 4 were also significantly increased at 96 h compared with control group (P<0.01) respectively in response to endogenous Nampt upregulation. Furthermore, the expression level of Sirt1 was significantly reduced (P<0.05), and the NAD and NADH levels, and the NAD/NADH ratio are significantly altered in STZ-induced diabetic rats (P<0.01). Treatment with FK866 and nicotinamide mononucleotide (NMN) led to downregulation of vimentin and fibronectin, respectively. These results suggest a novel role of Nampt as a pro-inflammatory cytokine of mesangial fibrotic signaling. The Nampt-NF-κB p65 and Sirt1 signaling pathway serves a pivotal role in affecting the expression of fibrosis factors in diabetic nephropathy (DN) glomerular fibrosis processing. It is also suggested that prevention of endogenous Nampt upregulation may be critical in the treatment of DN pro-inflammatory fibrosis and NMN is likely to be a potential pharmacological agent for the treatment of resistant DN nephritic fibrosis.

16.
Onco Targets Ther ; 10: 5439-5443, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29180877

RESUMO

CMTM4 is the most conserved member of chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing (CMTM) family on chromosome 16q22.1, a locus that harbors a number of tumor-suppressor genes. In previous studies, CMTM4 was reported to be downregulated and exhibited tumor-suppressor activities by regulating cell growth and cell cycle in clear cell renal cell carcinoma. However, its roles in tumorigenesis of hepatocellular carcinoma (HCC) remain poorly studied. This study first investigated the expression of CMTM4 in HCC, and then examined the association between the expression of CMTM4 with the clinicopathological features and prognosis of HCC patients. It was found that CMTM4 was downregulated in HCC tissues, compared with matched adjacent nontumor tissues, as detected by immunohistochemistry. In addition, Kaplan-Meier survival analysis showed that the negative expression of CMTM4 was associated with decreased overall survival rates in patients with HCC. The results of this study suggest CMTM4 plays a role as a tumor suppressor in HCC and CMTM4 negative expression is a risk factor for poor prognosis of HCC.

17.
Int J Biol Macromol ; 101: 603-611, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28344090

RESUMO

The polysaccharides of Dicliptera chinensis (L.) Juss. (DCP-1 and DCP-2) were extracted and isolated using the methods of water extract-ethanol precipitate and sephadex column chromatography and characterized by gel permeation chromatography (GPC), Fourier transform infrared spectrometry (FT-IR) and gas chromatography (GC), respectively. The antioxidant activity of DCPs was evaluated by scavenging activity of DPPH, hydroxyl, superoxide anion and ABTS radical. Moreover, the anti-aging activity of DCP-2 was investigated using an aging model-induced by D-galactose (D-gal) in mice. The results show that the weight average molecular weight (Mw) of DCP-2 was 2 273Da with a narrow polydispersity index of 1.01, and it was a heteropolysaccharide and consisted of glucose, galactose, arabinose, rhamnose and mannose with a molar ratio of 3.20:2.54:1.69:1.58:1.00. DCP-2 had stronger antioxidant activity against DPPH, hydroxyl, superoxide anion and ABTS radical, while DCP-1 had hardly any antioxidant activity and DCP had weaker antioxidant activity. Furthermore, DCP-2 can enhance antioxidant capacity and had anti-aging activity against D-gal induced aging mice. These results proposed that DCP-2 might be developed as a potential functional food with the activity of anti-aging.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Pinaceae/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Envelhecimento/efeitos dos fármacos , Animais , Antioxidantes/isolamento & purificação , Etanol/química , Feminino , Camundongos , Peso Molecular , Polissacarídeos/isolamento & purificação , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...