Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 12(12): 11838-11846, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30395434

RESUMO

Wireless electronic devices require small, rechargeable batteries that can be rapidly designed and fabricated in customized form factors for shape conformable integration. Here, we demonstrate an integrated design and manufacturing method for aqueous zinc-ion batteries composed of polyaniline (PANI)-coated carbon fiber (PANI/CF) cathodes, laser micromachined zinc (Zn) anodes, and porous separators that are packaged within three-dimensional printed geometries, including rectangular, cylindrical, H-, and ring-shapes. The PANI/CF cathode possesses high surface area and conductivity giving rise to high rate (∼600 C) performance. Due to outstanding stability of Zn-PANI batteries against oxygen and moisture, they exhibit long cycling stability in an aqueous electrolyte solution. As exemplar, we demonstrated rechargeable battery packs with tunable voltage and capacity using stacked electrodes that are integrated with electronic components in customized wearable devices.

2.
Adv Mater ; 30(16): e1703027, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29543991

RESUMO

The growing demand for rechargeable lithium-ion batteries (LIBs) with higher capacity in customized geometries underscores the need for new battery materials, architectures, and assembly strategies. Here, the design, fabrication, and electrochemical performance of fully 3D printed LIBs composed of thick semisolid electrodes that exhibit high areal capacity are reported. Specifically, semisolid cathode and anode inks, as well as UV curable packaging and separator inks for direct writing of LIBs in arbitrary geometries are created. These fully 3D printed and packaged LIBs, which are encased between two glassy carbon current collectors, deliver an areal capacity of 4.45 mAh cm-2 at a current density of 0.14 mA cm-2 , which is equivalent to 17.3 Ah L-1 . The ability to produce high-performance LIBs in customized form factors opens new avenues for integrating batteries directly within 3D printed objects.

3.
J Am Chem Soc ; 138(40): 13230-13237, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27629363

RESUMO

Versatile and readily available battery materials compatible with a range of electrode configurations and cell designs are desirable for renewable energy storage. Here we report a promising class of materials based on redox active colloids (RACs) that are inherently modular in their design and overcome challenges faced by small-molecule organic materials for battery applications, such as crossover and chemical/morphological stability. RACs are cross-linked polymer spheres, synthesized with uniform diameters between 80 and 800 nm, and exhibit reversible redox activity as single particles, as monolayer films, and in the form of flowable dispersions. Viologen-based RACs display reversible cycling, accessing up to 99% of their capacity and 99 ± 1% Coulombic efficiency over 50 cycles by bulk electrolysis owing to efficient, long-distance intraparticle charge transfer. Ferrocene-based RACs paired with viologen-based RACs cycled efficiently in a nonaqueous redox flow battery employing a simple size-selective separator, thus demonstrating a possible application that benefits from their colloidal dimensions. The unprecedented versatility in RAC synthetic and electrochemical design opens new avenues for energy storage.

4.
Adv Mater ; 25(33): 4539-43, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-23776158

RESUMO

3D interdigitated microbattery architectures (3D-IMA) are fabricated by printing concentrated lithium oxide-based inks. The microbatteries are composed of interdigitated, high-aspect ratio cathode and anode structures. Our 3D-IMA, which exhibit high areal energy and power densities, may find potential application in autonomously powered microdevices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...