Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(52): e2313009120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109533

RESUMO

Genetic medicines have the potential to treat various diseases; however, certain ailments including inflammatory diseases and cancer would benefit from control over extracellular localization of therapeutic proteins. A critical gap therefore remains the need to develop and incorporate methodologies that allow for posttranslational control over expression dynamics, localization, and stability of nucleic acid-generated protein therapeutics. To address this, we explored how the body's endogenous machinery controls protein localization through signal peptides (SPs), including how these motifs could be incorporated modularly into therapeutics. SPs serve as a virtual zip code for mRNA transcripts that direct the cell where to send completed proteins within the cell and the body. Utilizing this signaling biology, we incorporated secretory SP sequences upstream of mRNA transcripts coding for reporter, natural, and therapeutic proteins to induce secretion of the proteins into systemic circulation. SP sequences generated secretion of various engineered proteins into the bloodstream following intravenous, intramuscular, and subcutaneous SP mRNA delivery by lipid, polymer, and ionizable phospholipid delivery carriers. SP-engineered etanercept/TNF-α inhibitor proteins demonstrated therapeutic efficacy in an imiquimod-induced psoriasis model by reducing hyperkeratosis and inflammation. An SP-engineered anti-PD-L1 construct mediated mRNA encoded proteins with longer serum half-lives that reduced tumor burden and extended survival in MC38 and B16F10 cancer models. The modular nature of SP platform should enable intracellular and extracellular localization control of various functional proteins for diverse therapeutic applications.


Assuntos
Dermatite , Melanoma , Psoríase , Humanos , Animais , Melanoma/tratamento farmacológico , Melanoma/genética , Psoríase/tratamento farmacológico , Psoríase/genética , Inflamação/patologia , Sinais Direcionadores de Proteínas , RNA Mensageiro/genética , Modelos Animais de Doenças
2.
Nat Commun ; 14(1): 7322, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951948

RESUMO

Approximately 10% of Cystic Fibrosis (CF) patients, particularly those with CF transmembrane conductance regulator (CFTR) gene nonsense mutations, lack effective treatments. The potential of gene correction therapy through delivery of the CRISPR/Cas system to CF-relevant organs/cells is hindered by the lack of efficient genome editor delivery carriers. Herein, we report improved Lung Selective Organ Targeting Lipid Nanoparticles (SORT LNPs) for efficient delivery of Cas9 mRNA, sgRNA, and donor ssDNA templates, enabling precise homology-directed repair-mediated gene correction in CF models. Optimized Lung SORT LNPs deliver mRNA to lung basal cells in Ai9 reporter mice. SORT LNP treatment successfully corrected the CFTR mutations in homozygous G542X mice and in patient-derived human bronchial epithelial cells with homozygous F508del mutations, leading to the restoration of CFTR protein expression and chloride transport function. This proof-of-concept study will contribute to accelerating the clinical development of mRNA LNPs for CF treatment through CRISPR/Cas gene correction.


Assuntos
Fibrose Cística , Humanos , Camundongos , Animais , Fibrose Cística/terapia , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , Pulmão/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/uso terapêutico
3.
Adv Mater ; 35(51): e2303261, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37196221

RESUMO

Messenger RNA (mRNA) has received great attention in the prevention and treatment of various diseases due to the success of coronavirus disease 2019 (COVID-19) mRNA vaccines (Comirnaty and Spikevax). To meet the therapeutic purpose, it is required that mRNA must enter the target cells and express sufficient proteins. Therefore, the development of effective delivery systems is necessary and crucial. Lipid nanoparticle (LNP) represents a remarkable vehicle that has indeed accelerated mRNA applications in humans, as several mRNA-based therapies have already been approved or are in clinical trials. In this review, the focus is on mRNA-LNP-mediated anticancer therapy. It summarizes the main development strategies of mRNA-LNP formulations, discusses representative therapeutic approaches in cancer, and points out current challenges and possible future directions of this research field. It is hoped that these delivered messages can help further improve the application of mRNA-LNP technology in cancer therapy.


Assuntos
Nanopartículas , Neoplasias , Humanos , Lipossomos , Vacinas contra COVID-19 , RNA Mensageiro , Neoplasias/terapia
4.
Chemosphere ; 329: 138660, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37044138

RESUMO

Hydraulic retention time (HRT), as an important parameter in the wastewater treatment process, has a great impact on water quality and energy consumption. With the rapid advances in computer technology and deepened understanding of in microbial metabolism, a series of activated sludge models (ASMs) have been developed and applied in wastewater treatment. However, ASMs simulation based on the nexus of HRT, water treatment process, water quality and energy consumption has yet to be verified. In this study, HRT was creatively linked to water treatment process variation. And a novel combined process model (CPM) was developed based on the operational data and treatment performance data from 4 full-scale coking wastewater treatment processes. In the CPM, an array of biological treatment processes were represented by setting the HRT in respective treatment units of the anaerobic-oxic-hydrolytic & denitrification-oxic (A/O/H/O) process. The relationships between HRT, effluent quality and energy consumption were systematically analyzed. Results showed that: (i) for A/O/H/O process, the HRT of first oxic (O1) reactor has a key effect on the effluent water quality and energy consumption, while the impact of the anaerobic (A) reactor HRT was limited; (ii) the O/H/O process has a clear advantage in treating coking wastewater due to the carbon removal and detoxification function of O1 reactor; (iii) the lowest energy consumption (with the total system HRT below 210 h) to meet the biological effluent quality requirements (COD = 200 mg/L, TN = 50 mg/L) is 4.429 kWh/m3. Since the CPM could effectively work out the optimal process configuration and break the boundaries between HRT and process variation, it has enormous potential to be extended to the design of other wastewater treatment processes.


Assuntos
Coque , Purificação da Água , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos , Águas Residuárias , Esgotos , Anaerobiose
5.
Sci Total Environ ; 881: 163384, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37044344

RESUMO

Due to the phosphorus (P) deficiency in coking wastewater, sufficient P needs to be provided in the treatment process to maintain biotic activity. However, most of the dosed P sources are transferred to the sludge phase out of the chemical equilibrium. After an in-depth investigation of P morphology changes in coking wastewater treatment, it is found that above 71.6 % P applied to the full-scale O/H/H/O (oxic-hydrolytic & denitrification-hydrolytic & denitrification-oxic) process for coking wastewater treatment is ended up in the sludge phase of the aerobic reactors in the forms of non-apatite inorganic phosphorus (NAIP). Theoretical simulations suggest that the P forms precipitates such as FePO4·2H2O, AlPO4·2H2O, MnHPO4 at pH < 7, and Ca5(PO4)3OH at pH > 7. Microbial utilization of P in coking wastewater treatment is swayed by precipitation, pH and sludge retention time (SRT). By pyrolysis treatment of the waste sludge at 700 °C, phosphoric substances in coking sludge are enriched and converted into Ca5(PO4)3OH, Ca5(PO4)3Cl, Ca3(PO4)2, etc. with apatite phosphorus (AP) accounting for 65.7 % of total phosphorus. Moreover, the heavy metals in biochar were below the national standard limits for discharge. This study shows that hazardous waste (coking sludge) can be transformed into bioavailable products (P-rich biochar) through comprehensive management of the fate of P. Combined with the O/H/H/O process, the mechanisms of phosphorus consumption in coking wastewater treatment are revealed for the first time, which will facilitate a reduced consumption of phosphorus and provide a demonstration for other phosphorus-deficient industrial wastewater treatment.


Assuntos
Coque , Águas Residuárias , Esgotos/química , Fósforo/química
6.
Inflamm Res ; 72(5): 1021-1035, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37016140

RESUMO

OBJECTIVE: This study investigated the impacts of SIRT1 activation on rheumatoid arthritis (RA)-related angiogenesis. METHODS: HUVECs were cultured by different human serum. Intracellular metabolites were quantified by UPLC-MS. Next, HUVECs and rat vascular epithelial cells under different inflammatory conditions were treated by a SIRT1 agonist resveratrol (RSV). Cytokines and biochemical indicators were detected by corresponding kits. Protein and mRNA expression levels were assessed by immunoblotting and PCR methods, respectively. Angiogenesis capabilities were evaluated by migration, wound-healing and tube-formation experiments. To down-regulate certain signals, gene-specific siRNA were applied. RESULTS: Metabolomics study revealed the accelerated glycolysis in RA serum-treated HUVECs. It led to ATP accumulation, but did not affect GTP levels. RSV inhibited pro-angiogenesis cytokines production and glycolysis in both the cells, and impaired the angiogenesis potentials. These effects were mimicked by an energy metabolism interrupter bikini in lipopolysaccharide (LPS)-primed HUVECs, largely independent of HIF-1α. Both RSV and bikinin can inhibit the activation of the GTP-dependent pathway Rho/ROCK and reduce VEGF production. Abrogation of RhoA signaling reinforced HIF-1α silencing-brought changes in LPS-stimulated HUVECs, and overshadowed the anti-angiogenesis potentials of RSV. CONCLUSION: Glycolysis provides additional energy to sustain Rho/ROCK activation in RA subjects, which promotes VEGF-driven angiogenesis and can be inhibited by SIRT1 activation.


Assuntos
Artrite Reumatoide , Neovascularização Patológica , Humanos , Ratos , Animais , Resveratrol/farmacologia , Neovascularização Patológica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo , Lipopolissacarídeos/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/metabolismo , Citocinas/metabolismo , Glicólise , Guanosina Trifosfato/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
7.
Nat Aging ; 3(6): 705-721, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37118553

RESUMO

How N6-methyladenosine (m6A), the most abundant mRNA modification, contributes to primate tissue homeostasis and physiological aging remains elusive. Here, we characterize the m6A epitranscriptome across the liver, heart and skeletal muscle in young and old nonhuman primates. Our data reveal a positive correlation between m6A modifications and gene expression homeostasis across tissues as well as tissue-type-specific aging-associated m6A dynamics. Among these tissues, skeletal muscle is the most susceptible to m6A loss in aging and shows a reduction in the m6A methyltransferase METTL3. We further show that METTL3 deficiency in human pluripotent stem cell-derived myotubes leads to senescence and apoptosis, and identify NPNT as a key element downstream of METTL3 involved in myotube homeostasis, whose expression and m6A levels are both decreased in senescent myotubes. Our study provides a resource for elucidating m6A-mediated mechanisms of tissue aging and reveals a METTL3-m6A-NPNT axis counteracting aging-associated skeletal muscle degeneration.


Assuntos
Fígado , Primatas , Animais , Humanos , Primatas/genética , Envelhecimento/genética , Homeostase/genética , Metiltransferases/genética
8.
J Clin Invest ; 133(11)2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37053010

RESUMO

Germline or somatic loss-of-function mutations of fumarate hydratase (FH) predispose patients to an aggressive form of renal cell carcinoma (RCC). Since other than tumor resection there is no effective therapy for metastatic FH-deficient RCC, an accurate method for early diagnosis is needed. Although MRI or CT scans are offered, they cannot differentiate FH-deficient tumors from other RCCs. Therefore, finding noninvasive plasma biomarkers suitable for rapid diagnosis, screening, and surveillance would improve clinical outcomes. Taking advantage of the robust metabolic rewiring that occurs in FH-deficient cells, we performed plasma metabolomics analysis and identified 2 tumor-derived metabolites, succinyl-adenosine and succinic-cysteine, as excellent plasma biomarkers for early diagnosis. These 2 molecules reliably reflected the FH mutation status and tumor mass. We further identified the enzymatic cooperativity by which these biomarkers are produced within the tumor microenvironment. Longitudinal monitoring of patients demonstrated that these circulating biomarkers can be used for reporting on treatment efficacy and identifying recurrent or metastatic tumors.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Fumarato Hidratase/genética , Fumarato Hidratase/metabolismo , Ácido Succínico , Mutação , Microambiente Tumoral
9.
Am J Hum Genet ; 110(4): 606-624, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36868238

RESUMO

Epigenetic reprogramming plays a critical role in chondrocyte senescence during osteoarthritis (OA) pathology, but the underlying molecular mechanisms remain to be elucidated. Here, using large-scale individual datasets and genetically engineered (Col2a1-CreERT2;Eldrflox/flox and Col2a1-CreERT2;ROSA26-LSL-Eldr+/+ knockin) mouse models, we show that a novel transcript of long noncoding RNA ELDR is essential for the development of chondrocyte senescence. ELDR is highly expressed in chondrocytes and cartilage tissues of OA. Mechanistically, exon 4 of ELDR physically mediates a complex consisting of hnRNPL and KAT6A to regulate histone modifications of the promoter region of IHH, thereby activating hedgehog signaling and promoting chondrocyte senescence. Therapeutically, GapmeR-mediated silencing of ELDR in the OA model substantially attenuates chondrocyte senescence and cartilage degradation. Clinically, ELDR knockdown in cartilage explants from OA-affected individuals decreased the expression of senescence markers and catabolic mediators. Taken together, these findings uncover an lncRNA-dependent epigenetic driver in chondrocyte senescence, highlighting that ELDR could be a promising therapeutic avenue for OA.


Assuntos
Cartilagem Articular , Osteoartrite , RNA Longo não Codificante , Camundongos , Animais , Condrócitos/metabolismo , Condrócitos/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Cromatina/metabolismo , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Proteínas Hedgehog/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia
10.
J Hazard Mater ; 447: 130802, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36669414

RESUMO

In this study, physicochemical pre- and post-treatment of highly polluting coking wastewater (CWW) for the removal of refractory compounds and recovery of high-energy substances/components was investigated. An economic optimization model targeting the development of a cost-effective and sustainable treatment technology was proposed. At the post-treatment stage, powdered activated carbon (PAC) was used to separate the refractory and toxic pollutants from the bio-treated CWW, with the adsorption capacity ranging from 50 to 120 mg chemical oxygen demand (COD) g-1 PAC. Then, the spent PAC, together with a coagulant, was reused in the pre-treatment of highly concentrated raw CWW, which lifted the adsorption capacity to 800-1200 mg COD g-1 PAC. Results showed that the adsorbent's high selectivity towards macromolecular and complicated pollutants could remove 25-65 % of COD in both CWW flows. Analysis of pollutants' molecular weight distribution and GC-MS indicated a good affinity between PAC and high-energy pollutants (phenolic compounds and alkanes), which could transfer 144,555 kJ m-3 of energy from CWW to the adsorption-coagulation sludge. The economic optimization model suggested that the cost of the adsorbent was compensated by the net benefits of energy recovery and that profit was achieved when the PAC price was less than 5562 CNY t-1. The proposed two-stage PAC/coagulant approach offers a way to sustainable water quality and sludge management, plus energy recycling, in CWW treatment. It may also be applied to the treatment of other industrial wastewaters.

11.
Nat Protoc ; 18(1): 265-291, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36316378

RESUMO

A new methodology termed selective organ targeting (SORT) was recently developed that enables controllable delivery of nucleic acids to target tissues. SORT lipid nanoparticles (LNPs) involve the inclusion of SORT molecules that accurately tune delivery to the liver, lungs and spleen of mice after intravenous administration. Nanoparticles can be engineered to target specific cells and organs in the body by passive, active and endogenous targeting mechanisms that require distinct design criteria. SORT LNPs are modular and can be prepared using scalable, synthetic chemistry and established engineering formulation methods. This protocol provides detailed procedures, including the synthesis of a representative ionizable cationic lipid, preparation of multiple classes of SORT LNPs by pipette, vortex and microfluidic mixing methods, physical characterization, and in vitro/in vivo mRNA delivery evaluation. Depending on the scale of the experiments, the synthesis of the ionizable lipid requires 4-6 d; LNPs can be formulated within several hours; LNP characterization can be completed in 2-4 h; and in vitro/in vivo evaluation studies require 1-14 d, depending on the design and application. Our strategy offers a versatile and practical method for rationally designing nanoparticles that accurately target specific organs. The SORT LNPs generated as described in this protocol can therefore be applied to multiple classes of LNP systems for therapeutic nucleic acid delivery and facilitate the development of protein replacement and genetic medicines in target tissues. This protocol does not require specific expertise, is modular to various lipids within defined physicochemical classes, and should be accomplishable by researchers from various backgrounds.


Assuntos
Lipossomos , Nanopartículas , Camundongos , Animais , RNA Mensageiro/química , Nanopartículas/química , Lipídeos/química , RNA Interferente Pequeno/genética
12.
Biophys Rep ; 9(5): 255-278, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38516300

RESUMO

Harnessing surface engineering strategies to functionalize nucleic acid-lipid nanoparticles (LNPs) for improved performance has been a hot research topic since the approval of the first siRNA drug, patisiran, and two mRNA-based COVID-19 vaccines, BNT162b2 and mRNA-1273. Currently, efforts have been mainly made to construct targeted LNPs for organ- or cell-type-specific delivery of nucleic acid drugs by conjugation with various types of ligands. In this review, we describe the surface engineering strategies for nucleic acid-LNPs, considering ligand types, conjugation chemistries, and incorporation methods. We then outline the general purification and characterization techniques that are frequently used following the engineering step and emphasize the specific techniques for certain types of ligands. Next, we comprehensively summarize the currently accessible organs and cell types, as well as the other applications of the engineered LNPs. Finally, we provide considerations for formulating targeted LNPs and discuss the challenges of successfully translating the "proof of concept" from the laboratory into the clinic. We believe that addressing these challenges could accelerate the development of surface-engineered LNPs for targeted nucleic acid delivery and beyond.

13.
J Dig Dis ; 23(10): 587-596, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36326787

RESUMO

OBJECTIVES: To investigate the relationship between systemic inflammatory response and short-term mortality in patients with non-cirrhotic chronic severe hepatitis (CSH) by using several indicators of inflammation including neutrophil-to-lymphocyte ratio (NLR), neutrophil (NEU), white blood cell (WBC), platelet-to lymphocyte ratio (PLR), and monocyte-to-lymphocyte ratio (MLR). METHODS: Data were collected from two prospectively enrolled CATCH-LIFE noncirrhotic cohorts. Cox regression analysis was used to investigate the association between systemic inflammatory biomarkers and 90-day liver transplant (LT)-free mortality. A generalized additive model (GAM) was used to illustrate the quantitative curve relationship between NLR and 90-day LT-free mortality. Kaplan-Meier method was used to estimate the 90-year LT-free survival. RESULTS: The prevalence of CSH was 20.5% (226/1103). The 28-day and 90-day LT-free mortality rates were 17.7% and 26.1%, respectively, for patients with non-cirrhotic CSH. Patients with no infection accounted for 75.0% of all CSH patients, and NLR was independently associated with 90-day LT-free mortality. NLR of 2.9 might be related to disease deterioration in CSH patients without infection. CONCLUSIONS: NLR may be an independent risk factor for 90-day LT-free mortality in patients with non-cirrhotic chronic liver disease. A NLR of 2.9 as the cut-off value can be used to predict disease aggravation in CSH patients without infection.


Assuntos
Hepatite , Neutrófilos , Humanos , Prognóstico , Estudos Retrospectivos , Linfócitos , Inflamação
14.
Int J Biol Macromol ; 209(Pt B): 2070-2083, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35500770

RESUMO

Cardiovascular diseases and vascular trauma can be commonly found in the population. Scholars worldwide hope to develop small-diameter vascular grafts that can replace autologous vessels for clinical use. Decellularized blood vessels can retain the original morphology, structure, and physical properties of blood vessels, which is conducive to cell growth, proliferation, and differentiation. In this study, porcine coronary arteries (PCAs) were decellularized to prepare decellularized porcine coronary artery (DPCA), and bilayer hybrid scaffolds were prepared by coating gelatin and sodium alginate mixed hydrogel of seven different proportions and combined with mouse fibroblasts (L929 cells) to study the construction of tissue engineering vessels in vitro. The obtained bilayer hybrid scaffolds were 3-7 cm in length, 5 mm in external diameter, and 1 mm in average wall thickness. All seven bilayer hybrid scaffolds showed good biocompatibility after cell inoculation. Compared with 2D culture, cells on 3D scaffolds grew relatively slowly in the first 4 days, and the number of cells proliferated rapidly at 7 days. In the same culture days, different concentrations of hydrogel also had an impact on cell proliferation. With the increase of hydrogel content, cells on the 3D scaffold formed cell colonies faster. The results showed that the scaffold had good biocompatibility and could meet the needs of artificial blood vessel construction.


Assuntos
Gelatina , Hidrogéis , Alginatos , Animais , Vasos Coronários , Gelatina/química , Hidrogéis/farmacologia , Camundongos , Suínos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
15.
Nat Nanotechnol ; 17(7): 777-787, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35551240

RESUMO

Genome editing holds great potential for cancer treatment due to the ability to precisely inactivate or repair cancer-related genes. However, delivery of CRISPR/Cas to solid tumours for efficient cancer therapy remains challenging. Here we targeted tumour tissue mechanics via a multiplexed dendrimer lipid nanoparticle (LNP) approach involving co-delivery of focal adhesion kinase (FAK) siRNA, Cas9 mRNA and sgRNA (siFAK + CRISPR-LNPs) to enable tumour delivery and enhance gene-editing efficacy. We show that gene editing was enhanced >10-fold in tumour spheroids due to increased cellular uptake and tumour penetration of nanoparticles mediated by FAK-knockdown. siFAK + CRISPR-PD-L1-LNPs reduced extracellular matrix stiffness and efficiently disrupted PD-L1 expression by CRISPR/Cas gene editing, which significantly inhibited tumour growth and metastasis in four mouse models of cancer. Overall, we provide evidence that modulating the stiffness of tumour tissue can enhance gene editing in tumours, which offers a new strategy for synergistic LNPs and other nanoparticle systems to treat cancer using gene editing.


Assuntos
Edição de Genes , Neoplasias , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Sistemas CRISPR-Cas/genética , Técnicas de Transferência de Genes , Lipossomos , Camundongos , Nanopartículas , Neoplasias/genética , Neoplasias/terapia
16.
Sci Total Environ ; 807(Pt 3): 151072, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34736752

RESUMO

The application of advanced biological treatment technology results in improved coking wastewater (CW) effluent quality at lower material and energy input practiced by wastewater treatment plants. In wastewater treatment, the diversity of biological processes combinations affects the variety of microorganisms and biochemical reactions resulting in effluent quality. Four full-scale CW processes, anaerobic-anoxic-oxic (A/A/O), anoxic-oxic-hydrolytic-oxic (A/O/H/O), anoxic-oxic-oxic (A/O/O), and oxic-hydrolytic-oxic (O/H/O) were compared for their consumption of chemicals and energy, emissions of greenhouse gases, and excess sludge production. A new performance indicator combining the above mentioned parameters was proposed to comprehensively evaluate processes in capacity to CW. The O/H/O process showed stable and reliable operation with minimum chemicals cost and the average energy consumption, whereas A/A/O at its good performance in TN removal required a large amount of alkaline chemicals to maintain stability. Besides, a substantial addition of chemicals in A/A/O results in larger average amounts of inorganic sludge. Also, the A/A/O process with a single aerobic unit appeared to be incapable of energy saving when dealing with CW rich in nitrogen and poor in phosphorus. The process with dual aerobic units can achieve more complete carbon and nitrogen removal, which is related to the sequence of biochemical reactions. Diverse sequence combinations can create variation in HRT and DO, whereby contaminants proceed through distinct channels of degradation. In the comparative analysis of CWPIs, it could be seen that O/H/O is the biological treatment process with the least equivalent energy consumption input at present thus exhibiting promising application in CW treatment. The A/O/O and A/O/H/O combinations are good attempts of development; however, more energy-efficient operation modes have to be further investigated.


Assuntos
Fenômenos Bioquímicos , Coque , Carbono , Fósforo , Águas Residuárias
17.
Chemosphere ; 291(Pt 2): 132874, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34774613

RESUMO

The Co/Ni-MOFs@CS composite derived from Co/Ni bimetallic organic framework was synthesized and characterized. Compared with a single O3 system, the synergy between carbon sphere (CS) and metal organic frameworks (MOFs) improved the electron transfer efficiency and the formation rate of •OH. The coexistence of Co and Ni in various valence states might accelerate the cyclic process of Co(II)/Co(III) and Ni(II)/Ni(III), thereby improving the catalytic activity. Taking levofloxacin as a model pollutant, the mechanism of catalytic process was discussed, and the catalytic reaction was successfully applied to the removal of residual organics in bio-treated coking wastewater (BTCW). The removal rates of chemical oxygen demand (COD) and total organic carbon (TOC) in 60 min were 50.85%-53.71% and 39.98%-43.48%. From the perspective of UV absorption and 3D EEM, catalytic ozonation was more conducive to breaking the electronic protection of inert organic molecules such as heterocyclic compounds, and achieving higher efficiency of mineralization. It provides a new idea for catalytic ozonation technology of wastewater treatment in the future from theory, technology and application.


Assuntos
Coque , Ozônio , Poluentes Químicos da Água , Carbono , Catálise , Águas Residuárias , Poluentes Químicos da Água/análise
18.
Pharmaceutics ; 13(11)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34834329

RESUMO

Messenger RNA (mRNA) has generated great attention due to its broad potential therapeutic applications, including vaccines, protein replacement therapy, and immunotherapy. Compared to other nucleic acids (e.g., siRNA and pDNA), there are more opportunities to improve the delivery efficacy of mRNA through systematic optimization. In this report, we studied a high-throughput library of 1200 functional polyesters for systemic mRNA delivery. We focused on the chemical investigation of hydrophobic optimization as a method to adjust mRNA polyplex stability, diameter, pKa, and efficacy. Focusing on a region of the library heatmap (PE4K-A17), we further explored the delivery of luciferase mRNA to IGROV1 ovarian cancer cells in vitro and to C57BL/6 mice in vivo following intravenous administration. PE4K-A17-0.2C8 was identified as an efficacious carrier for delivering mRNA to mouse lungs. The delivery selectivity between organs (lungs versus spleen) was found to be tunable through chemical modification of polyesters (both alkyl chain length and molar ratio in the formulation). Cre recombinase mRNA was delivered to the Lox-stop-lox tdTomato mouse model to study potential application in gene editing. Overall, we identified a series of polymer-mRNA polyplexes stabilized with Pluronic F-127 for safe and effective delivery to mouse lungs and spleens. Structure-activity relationships between alkyl side chains and in vivo delivery were elucidated, which may be informative for the continued development of polymer-based mRNA delivery.

19.
Adv Mater ; 33(30): e2006619, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34137093

RESUMO

Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) protein gene editing is poised to transform the treatment of genetic diseases. However, limited progress has been made toward precise editing of DNA via homology-directed repair (HDR) that requires careful orchestration of complex steps. Herein, dendrimer-based lipid nanoparticles (dLNPs) are engineered to co-encapsulate and deliver multiple components for in vivo HDR correction. BFP/GFP switchable HEK293 cells with a single Y66H amino acid mutation are employed to assess HDR-mediated gene editing following simultaneous, one-pot delivery of Cas9 mRNA, single-guide RNA, and donor DNA. Molar ratios of individual LNP components and weight ratios of the three nucleic acids are systematically optimized to increase HDR efficiency. Using flow cytometry, fluorescence imaging, and DNA sequencing to quantify editing, optimized 4A3-SC8 dLNPs edit >91% of all cells with 56% HDR efficiency in vitro and >20% HDR efficiency in xenograft tumors in vivo. Due to the all-in-one simplicity and high efficacy, the developed dLNPs offer a promising route toward the gene correction of disease-causing mutations.


Assuntos
Dendrímeros/química , Lipossomos/química , Nanopartículas/química , Sequência de Aminoácidos , Animais , Sistemas CRISPR-Cas , DNA/metabolismo , Edição de Genes , Células HEK293 , Humanos , Técnicas In Vitro , Camundongos Nus , Mutação , RNA Guia de Cinetoplastídeos/metabolismo , Reparo de DNA por Recombinação
20.
Nat Mater ; 20(5): 701-710, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33542471

RESUMO

Endosomal escape remains a fundamental barrier hindering the advancement of nucleic acid therapeutics. Taking inspiration from natural phospholipids that comprise biological membranes, we report the combinatorial synthesis of multi-tailed ionizable phospholipids (iPhos) capable of delivering messenger RNA or mRNA/single-guide RNA for gene editing in vivo. Optimized iPhos lipids are composed of one pH-switchable zwitterion and three hydrophobic tails, which adopt a cone shape in endosomal acidic environments to facilitate membrane hexagonal transformation and subsequent cargo release from endosomes. Structure-activity relationships reveal that iPhos chemical structure can control in vivo efficacy and organ selectivity. iPhos lipids synergistically function with various helper lipids to formulate multi-component lipid nanoparticles (called iPLNPs) for selective organ targeting. Zwitterionic, ionizable cationic and permanently cationic helper lipids enable tissue-selective mRNA delivery and CRISPR-Cas9 gene editing in spleen, liver and lungs (respectively) following intravenous administration. This rational design of functional phospholipids demonstrates substantial value for gene editing research and therapeutic applications.


Assuntos
Sistemas CRISPR-Cas , Membrana Celular/metabolismo , Sistemas de Liberação de Medicamentos , Edição de Genes , Fosfolipídeos , RNA Mensageiro , Administração Intravenosa , Animais , Linhagem Celular , Feminino , Camundongos , Especificidade de Órgãos , Fosfolipídeos/química , Fosfolipídeos/farmacologia , RNA Mensageiro/química , RNA Mensageiro/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...