Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1387102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38916037

RESUMO

Sesuvium portulacastrum L. is a flowering succulent halophyte in the ice plant family Aizoaceae. There are various ecotypes distributed in sandy coastlines and salty marshlands in tropical and subtropical regions with the common name of sea purslane. These plants are tolerant to salt, drought, and flooding stresses and have been used for the stabilization of sand dunes and the restoration of coastal areas. With the increased salinization of agricultural soils and the widespread pollution of toxic metals in the environment, as well as excessive nutrients in waterbodies, S. portulacastrum has been explored for the desalination of saline soils and the phytoremediation of metals from contaminated soils and nitrogen and phosphorus from eutrophic water. In addition, sea purslane has nutraceutical and pharmaceutical value. Tissue analysis indicates that many ecotypes are rich in carbohydrates, proteins, vitamins, and mineral nutrients. Native Americans in Florida eat it raw, pickled, or cooked. In the Philippines, it is known as atchara after being pickled. S. portulacastrum contains high levels of ecdysteroids, which possess antidiabetic, anticancer, and anti-inflammatory activities in mammals. In this review article, we present the botanical information, the physiological and molecular mechanisms underlying the tolerance of sea purslane to different stresses, its nutritional and pharmaceutical value, and the methods for its propagation and production in saline soils and waterbodies. Its adaptability to a wide range of stressful environments and its role in the production of valuable bioactive compounds suggest that S. portulacastrum can be produced in saline soils as a leafy vegetable and is a valuable genetic resource that can be used for the bioremediation of soil salinity and eutrophic water.

2.
Front Microbiol ; 14: 1287582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075866

RESUMO

Introduction: Endophytic microorganisms are bacteria or fungi that inhabit plant internal tissues contributing to various biological processes of plants. Some endophytic microbes can promote plant growth, which are known as plant growth-promoting endophytes (PGPEs). There has been an increasing interest in isolation and identification of PGPEs for sustainable production of crops. This study was undertaken to isolate PGPEs from roots of a halophytic species Sesuvium portulacastrum L. and elucidate potential mechanisms underlying the plant growth promoting effect. Methods: Surface-disinfected seeds of S. portulacastrum were germinated on an in vitro culture medium, and roots of some germinated seedlings were contaminated by bacteria and fungi. From the contamination, an endophytic fungus called BF-F (a fungal strain isolated from bacterial and fungal contamination) was isolated and identified. The genome of BF-F strain was sequenced, its genome structure and function were analyzed using various bioinformatics software. Additionally, the effect of BF-F on plant growth promotion were investigated by gene cluster analyses. Results: Based on the sequence homology (99%) and phylogenetic analysis, BF-F is likely a new Cladosporium angulosum strain or possibly a new Cladosporium species that is most homologous to C. angulosum. The BF-F significantly promoted the growth of dicot S. portulacastrum and Arabidopsis as well as monocot rice. Whole genome analysis revealed that the BF-F genome has 29,444,740 bp in size with 6,426 annotated genes, including gene clusters associated with the tryptophan synthesis and metabolism pathway, sterol synthesis pathway, and nitrogen metabolism pathway. BF-F produced indole-3-acetic acid (IAA) and also induced the expression of plant N uptake related genes. Discussion: Our results suggest that BF-F is a novel strain of Cladosporium and has potential to be a microbial fertilizer for sustainable production of crop plants. The resulting genomic information will facilitate further investigation of its genetic evolution and its function, particularly mechanisms underlying plant growth promotion.

3.
Front Plant Sci ; 14: 1277762, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089796

RESUMO

Introduction: Salt stress is a major constraint affecting crop productivity worldwide. Investigation of halophytes could provide valuable information for improving economically important crops to tolerate salt stress and for more effectively using halophytes to remediate saline environments. Sesuvium portulacastrum L. is a halophyte species widely distributed in tropical and subtropical coastal regions and can absorb a large amount of sodium (Na). This study was to analyze S. portulacastrum responses to salt stress at morphological, physiological, proteomic, and metabolomic levels and pursue a better understanding of mechanisms behind its salt tolerance. Methods: The initial experiment evaluated morphological responses of S. portulacastrum to different concentrations of NaCl in a hydroponic system, and subsequent experiments compared physiological, proteomic, and metabolomic changes in S. portulacastrum after being exposed to 0.4 M NaCl for 24 h as immediate salt stress (IS) to 14 days as adaptive salt stress (AS). Through these analyses, a working model to illustrate the integrative responses of S. portulacastrum to salt stress was proposed. Results: Plants grown in 0.4 M NaCl were morphologically comparable to those grown in the control treatment. Physiological changes varied in control, IS, and AS plants based on the measured parameters. Proteomic analysis identified a total of 47 and 248 differentially expressed proteins (DEPs) in leaves and roots, respectively. KEGG analysis showed that DEPs, especially those occurring in roots, were largely related to metabolic pathways. Root metabolomic analysis showed that 292 differentially expressed metabolites (DEMs) occurred in IS plants and 371 in AS plants. Among them, 20.63% of upregulated DEMs were related to phenolic acid metabolism. Discussion: Based on the integrative analysis of proteomics and metabolomics, signal transduction and phenolic acid metabolism appeared to be crucial for S. portulacastrum to tolerate salt stress. Specifically, Ca2+, ABA, and JA signalings coordinately regulated salt tolerance in S. portulacastrum. The stress initially activated phenylpropanoid biosynthesis pathway through Ca2+ signal transduction and increased the content of metabolites, such as coniferin. Meanwhile, the stress inhibited MAPK signaling pathway through ABA and JA signal transduction, which promoted Na sequestration into the vacuole to maintain ROS homeostasis and enhanced S. portulacastrum tolerance to salt stress.

4.
Front Plant Sci ; 14: 1082480, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968419

RESUMO

Abiotic stress is one of the major constraints which restrain plant growth and productivity by disrupting physiological processes and stifling defense mechanisms. Hence, the present work aimed to evaluate the sustainability of bio-priming salt tolerant endophytes for improving plant salt tolerance. Paecilomyces lilacinus KUCC-244 and Trichoderma hamatum Th-16 were obtained and cultured on PDA medium containing different concentrations of NaCl. The highest salt (500 mM) tolerant fungal colonies were selected and purified. Paecilomyces at 61.3 × 10-6 conidia/ml and Trichoderma at about 64.9 × 10-3 conidia/ml of colony forming unit (CFU) were used for priming wheat and mung bean seeds. Twenty- days-old primed and unprimed seedlings of wheat and mung bean were subjected to NaCl treatments at 100 and 200 mM. Results indicate that both endophytes sustain salt resistance in crops, however T. hamatum significantly increased the growth (141 to 209%) and chlorophyll content (81 to 189%), over unprimed control under extreme salinity. Moreover, the reduced levels (22 to 58%) of oxidative stress markers (H2O2 and MDA) corresponded with the increased antioxidant enzymes like superoxide dismutase (SOD) and catalase (CAT) activities (141 and 110%). Photochemical attributes like quantum yield (FV/FM) (14 to 32%) and performance index (PI) (73 to 94%) were also enhanced in bio-primed plants in comparison to control under stress. In addition, the energy loss (DIO/RC) was considerably less (31 to 46%), corresponding with lower damage at PS II level in primed plants. Also, the increase in I and P steps of OJIP curve in T. hamatum and P. lilacinus primed plants showed the availability of more active reaction centers (RC) at PS II under salt stress in comparison to unprimed control plants. Infrared thermographic images also showed that bio-primed plants were resistant to salt stress. Hence, it is concluded that the use of bio-priming with salt tolerant endophytes specifically T. hamatum can be an effective approach to mitigate the salt stress cosnequences and develop a potential salt resistance in crop plants.

5.
Microb Ecol ; 86(2): 1120-1131, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36372840

RESUMO

Fungal communities are essential to the maintenance of soil multifunctionality. Plant invasion represents a growing challenge for the conservation of soil biodiversity across the globe, but the impact of non-native species invasion on fungal diversity, community structure, and assembly processes remains largely unknown. Here, we examined the diversity, community composition, functional guilds, and assembly process of fungi at three soil depths underneath a native species, three non-native species, and a bare tidal flat from a coastal wetland. Plant species was more important than soil depth in regulating the diversity, community structure, and functional groups of fungi. Non-native species, especially Spartina alterniflora, increased fungal diversity, altered fungal community structure, and increased the relative abundance of saprotrophic and pathogenic fungi in coastal wetland soils. Stochastic processes played a predominant role in driving fungal community assembly, explaining more than 70% of the relative contributions. However, compared to a native species, non-native species, especially S. alterniflora, reduced the relative influence of stochastic processes in fungal community assembly. Collectively, our results provide novel evidence that non-native species can increase fungal diversity, the relative abundance of saprotrophic and pathogenic fungi, and deterministic processes in the assembly of fungi in coastal wetlands, which can expand our knowledge of the dynamics of fungal communities in subtropical coastal wetlands.


Assuntos
Micobioma , Áreas Alagadas , Espécies Introduzidas , Plantas , Poaceae/fisiologia , Solo/química , Fungos/genética , Microbiologia do Solo , China
6.
Front Plant Sci ; 13: 1027390, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466284

RESUMO

The mutualistic relationship between mycorrhizal fungi and plant roots is a widespread terrestrial symbiosis. The symbiosis enables plants to better adapt to adverse soil conditions, enhances plant tolerance to abiotic and biotic stresses, and improves plant establishment and growth. Thus, mycorrhizal fungi are considered biostimulants. Among the four most common types of mycorrhizae, arbuscular mycorrhiza (AM) and ectomycorrhiza (EcM) have been more intensively studied than ericoid mycorrhiza (ErM) and orchidaceous mycorrhiza (OrM). ErM fungi can form symbiotic relationships with plants in the family Ericaceae. Economically important plants in this family include blueberry, bilberry, cranberry, and rhododendron. ErM fungi are versatile as they are both saprotrophic and biotrophic. Increasing reports have shown that they can degrade soil organic matter, resulting in the bioavailability of nutrients for plants and microbes. ErM fungi can synthesize hormones to improve fungal establishment and plant root initiation and growth. ErM colonization enables plants to effective acquisition of mineral nutrients. Colonized plants are able to tolerate different abiotic stresses, including drought, heavy metals, and soil salinity as well as biotic stresses, such as pathogen infections. This article is intended to briefly introduce ErM fungi and document their beneficial effects on ericaceous plants. It is anticipated that the exploration of this special group of fungi will further improve our understanding of their value of symbiosis to ericaceous plants and ultimately result in the application of valuable species or strains for improving the establishment and growth of ericaceous plants.

7.
Front Plant Sci ; 13: 957735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420041

RESUMO

Nitric oxide (NO) has received much attention since it can boost plant defense mechanisms, and plenty of studies have shown that exogenous NO improves salinity tolerance in plants. However, because of the wide range of experimental settings, it is difficult to assess the administration of optimal dosages, frequency, timing, and method of application and the overall favorable effects of NO on growth and yield improvements. Therefore, we conducted a meta-analysis to reveal the exact physiological and biochemical mechanisms and to understand the influence of plant-related or method-related factors on NO-mediated salt tolerance. Exogenous application of NO significantly influenced biomass accumulation, growth, and yield irrespective of salinity stress. According to this analysis, seed priming and foliar pre-treatment were the most effective methods of NO application to plants. Moreover, one-time and regular intervals of NO treatment were more beneficial for plant growth. The optimum concentration of NO ranges from 0.1 to 0.2 mM, and it alleviates salinity stress up to 150 mM NaCl. Furthermore, the beneficial effect of NO treatment was more pronounced as salinity stress was prolonged (>21 days). This meta-analysis showed that NO supplementation was significantly applicable at germination and seedling stages. Interestingly, exogenous NO treatment boosted plant growth most efficiently in dicots. This meta-analysis showed that exogenous NO alleviates salt-induced oxidative damage and improves plant growth and yield potential by regulating osmotic balance, mineral homeostasis, photosynthetic machinery, the metabolism of reactive oxygen species, and the antioxidant defense mechanism. Our analysis pointed out several research gaps, such as lipid metabolism regulation, reproductive stage performance, C4 plant responses, field-level yield impact, and economic profitability of farmers in response to exogenous NO, which need to be evaluated in the subsequent investigation.

8.
Front Plant Sci ; 13: 973419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212287

RESUMO

Soil salinity is an important environmental problem that seriously affects plant growth and crop productivity. Phytoremediation is a cost-effective solution for reducing soil salinity and potentially converting the soils for crop production. Sesuvium portulacastrum is a typical halophyte which can grow at high salt concentrations. In order to explore the salt tolerance mechanism of S. portulacastrum, rooted cuttings were grown in a hydroponic culture containing ½ Hoagland solution with or without addition of 400 mM Na for 21 days. Root and leaf samples were taken 1 h and 21 days after Na treatment, and RNA-Seq was used to analyze transcript differences in roots and leaves of the Na-treated and control plants. A large number of differentially expressed genes (DEGs) were identified in the roots and leaves of plants grown under salt stress. Several key pathways related to salt tolerance were identified through KEGG analysis. Combined with physiological data and expression analysis, it appeared that cyclic nucleotide gated channels (CNGCs) were implicated in Na uptake and Na+/H+ exchangers (NHXs) were responsible for the extrusion and sequestration of Na, which facilitated a balance between Na+ and K+ in S. portulacastrum under salt stress. Soluble sugar and proline were identified as important osmoprotectant in salt-stressed S. portulacastrum plants. Glutathione metabolism played an important role in scavenging reactive oxygen species. Results from this study show that S. portulacastrum as a halophytic species possesses a suite of mechanisms for accumulating and tolerating a high level of Na; thus, it could be a valuable plant species used for phytoremediation of saline soils.

9.
Front Plant Sci ; 13: 958978, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247568

RESUMO

Wastewater from tanneries is a major source of heavy metals in soil and plants when used for crop irrigation. The unavoidable toxicological effects of this contamination, however, can be minimized through two independent steps discussed in the present study. In the first step, a batch sorption experiment was conducted in which Cr was adsorbed through bentonite clay. For this purpose, DTPA extraction method was used to analyze Cr concentration in the soil after regular time intervals (0.5, 1, 2, 6, 8, 9, 10.5, 11.5, and 20.3 h) which reduced Cr concentration from 38.542 mgL-1 for 30 min to 5.6597 mgL-1 for 20.3 h, respectively, by applying 1% bentonite. An increase in the contact time efficiently allowed soil adsorbent to adsorb maximum Cr from soil samples. In the second step, a pot experiment was conducted with 10 different treatments to improve the physiological and biochemical parameters of the Solanum melongena L. irrigated under tanneries' wastewater stress. There were four replicates, and the crop was harvested after 30 days of germination. It was seen that the application of wastewater significantly (P < 0.01) reduced growth of Solanum melongena L. by reducing root (77%) and shoot (63%) fresh weight when compared with CFOP (Ce-doped Fe2O3 nanoparticles); chlorophyll a and b (fourfolds) were improved under CFOP application relative to control (CN). However, the deleterious effects of Cr (86%) and Pb (90%) were significantly decreased in shoot through CFOP application relative to CN. Moreover, oxidative damage induced by the tannery's wastewater stress (P < 0.01) was tolerated by applying different soil amendments. However, results were well pronounced with the application of CFOP which competitively decreased the concentrations of MDA (95%), H2O2 (89%), and CMP (85%) by efficiently triggering the activities of antioxidant defense mechanisms such as APX (threefold), CAT (twofold), and phenolics (75%) in stem relative to CN. Consequently, all the applied amendments (BN, BT, FOP, and CFOP) have shown the ability to efficiently tolerate the tannery's wastewater stress; results were more pronounced with the addition of CFOP and FOP+BT by improving physiological and biochemical parameters of Solanum melongena L. in an eco-friendly way.

10.
Front Plant Sci ; 13: 913825, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923873

RESUMO

Environmental extremes such as hypersaline conditions are significant threats to agricultural productivity. The sustainable use of halophilic microbial strains was evaluated in plant in a salt stress environment. Oxygen-evolving complex (OEC), energy compartmentalization, harvesting efficiencies (LHE), specific energy fluxes (SEF), and nitrogen assimilation of oilseed crops (Sunflower cultivars) in a suboptimal environment was examined. Plants were grown in a plastic pot (15 ×18 cm2) containing sterilized (autoclaved at 120°C for 1 h) soil. Twenty-five ml suspension (107 CFU/ml) each of Bacillus cereus strain KUB-15 and KUB-27 (accession number NR 074540.1) and Bacillus licheniformis strain AAB9 (accession number MW362506), were applied via drenching method. Month-old plants were subjected to salt stress via gradual increment method. The energy compartmentalization of microbial inoculated plants exposed to salt stress revealed higher photosystem II (PSII) activity at the donor side, lesser photo-inhibition, and increased performance of oxygen-evolving complex compared to control. High potassium (K+) and low sodium (Na+) ions in treated leaves with the activated barricade of the antioxidant system stimulated by Bacillus strains favored enhanced photochemical efficiency, smooth electron transport, and lesser energy dissipation in the stressed plants. Moreover, the results reveal the increased activity of nitrite reductase (NiR) and nitrate reductase (NR) by microbial inoculation that elevated the nitrogen availability in the salt-stressed plant. The current research concludes that the application of bio-inoculants that reside in the hyper-saline environment offers substantial potential to enhance salt tolerance in sunflowers by modulating their water uptake, chlorophyll, nitrogen metabolism, and better photochemical yield.

11.
Antibiotics (Basel) ; 11(1)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35052945

RESUMO

Plant-based removal of nitrogen (N) and phosphorus (P) from water bodies is an important method for remediation of aquaculture wastewater. In order to acquire knowledge as to how antibiotic residues in wastewater might affect the microbial community and plant uptake of N and P, this study investigated N and P removal by a coastal plant Sesuvium portulacastrum L. grown in aquaculture wastewater treated with 0, 1, 5, or 50 mg/L sulfonamide antibiotics (sulfadiazine, SD) for 28 days and compared the microbial community structure between the water and rhizosphere. Results showed that SD significantly decreased N removal rates from 87.5% to 22.1% and total P removal rates from 99.6% to 85.5%. Plant fresh weights, root numbers, and moisture contents as well as activities of some enzymes in leaves were also reduced. SD changed the microbial community structure in water, but the microbial community structure in the rhizosphere was less affected by SD. The microbial diversity in water was higher than that in the rhizosphere, indicating microbial community differences. Our results showed that the commonly used antibiotic, SD, in aquaculture can inhibit plant growth, change the structure of microbial community, and reduce the capacity of S. portulacastrum plants to remove N and P from wastewater, and also raised alarm about detrimental effects of antibiotic residues in phytoremediation of wastewater.

13.
Front Plant Sci ; 12: 768523, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868165

RESUMO

Cobalt is a transition metal located in the fourth row of the periodic table and is a neighbor of iron and nickel. It has been considered an essential element for prokaryotes, human beings, and other mammals, but its essentiality for plants remains obscure. In this article, we proposed that cobalt (Co) is a potentially essential micronutrient of plants. Co is essential for the growth of many lower plants, such as marine algal species including diatoms, chrysophytes, and dinoflagellates, as well as for higher plants in the family Fabaceae or Leguminosae. The essentiality to leguminous plants is attributed to its role in nitrogen (N) fixation by symbiotic microbes, primarily rhizobia. Co is an integral component of cobalamin or vitamin B12, which is required by several enzymes involved in N2 fixation. In addition to symbiosis, a group of N2 fixing bacteria known as diazotrophs is able to situate in plant tissue as endophytes or closely associated with roots of plants including economically important crops, such as barley, corn, rice, sugarcane, and wheat. Their action in N2 fixation provides crops with the macronutrient of N. Co is a component of several enzymes and proteins, participating in plant metabolism. Plants may exhibit Co deficiency if there is a severe limitation in Co supply. Conversely, Co is toxic to plants at higher concentrations. High levels of Co result in pale-colored leaves, discolored veins, and the loss of leaves and can also cause iron deficiency in plants. It is anticipated that with the advance of omics, Co as a constitute of enzymes and proteins and its specific role in plant metabolism will be exclusively revealed. The confirmation of Co as an essential micronutrient will enrich our understanding of plant mineral nutrition and improve our practice in crop production.

14.
Front Plant Sci ; 12: 647507, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054894

RESUMO

Chloroplasts are organelles responsible for chlorophyll biosynthesis, photosynthesis, and biosynthesis of many metabolites, which are one of key targets for crop improvement. Elucidating and engineering genes involved in chloroplast development are important approaches for studying chloroplast functions as well as developing new crops. In this study, we report a long-lived albino mutant derived from a popular ornamental plant Epipremnum aureum 'Golden Pothos' which could be used as a model for analyzing the function of genes involved in chloroplast development and generating colorful plants. Albino mutant plants were isolated from regenerated populations of variegated 'Golden Pothos' whose albino phenotype was previously found to be due to impaired expression of EaZIP, encoding Mg-protoporphyrin IX monomethyl ester cyclase. Using petioles of the mutant plants as explants with a traceable sGFP gene, an efficient transformation system was developed. Expressing Arabidopsis CHL27 (a homolog of EaZIP) but not EaZIP in albino plants restored green color and chloroplast development. Interestingly, in addition to the occurrence of plants with solid green color, plants with variegated leaves and pale-yellow leaves were also obtained in the regenerated populations. Nevertheless, our study shows that these long-lived albino plants along with the established efficient transformation system could be used for creating colorful ornamental plants. This system could also potentially be used for investigating physiological processes associated with chlorophyll levels and chloroplast development as well as certain biological activities, which are difficult to achieve using green plants.

15.
Front Plant Sci ; 12: 770084, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35251059

RESUMO

The present study aimed to witness the plant-microbe interaction associated with salt tolerance in crops. We isolated the endophytic microbe from the root zone of halophytic grass. Later, the salt tolerance of the endophyte was tested in the saline medium and was identified using nucleotide sequencing (GenBank under the accession numbers: SUB9030920 AH1_AHK_ITS1 MW570850: SUB9030920 AH1_AHK_ITS4 MW570851). Rice and maize seeds were coated with identified endophyte Aspergillus terreus and were sown in separate plastic pots. Later 21-day-old seedlings were subjected to three NaCl concentrations, including 50, 100, and 150 mM salt stress. Under saline conditions, A. terreus showed a substantial increase in growth, biomass, relative water content, oxidative balance, and photochemical efficiency of rice and maize plants. The data reflected that the stimulation of gibberellic acid (GA) in treated leaves may be the main reason for the upregulation of photosynthesis and the antioxidant defense cascade. The data also depict the downregulation of oxidative damage markers malondialdehyde, hydrogen peroxide in rice and maize plants. Conclusively, salt-tolerant endophytic fungus A. terreus explicitly displayed the positive plant-microbe interaction by developing salt tolerance in rice and maize plants. Salt tolerance by endophytic fungus coincides with the enhanced GA concentration, which illustrated the stimulated physiological mechanism and gene in response to the extreme environmental crisis, resulting in improved crop productivity.

16.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121168

RESUMO

'Candidatus Liberibacter asiaticus' (CLas) is the pathogenic bacterium that causes the disease Huanglongbing (HLB) in citrus and some model plants, such as Nicotiana benthamiana. After infection, CLas releases a set of effectors to modulate host responses. One of these critical effectors is Sec-delivered effector 1 (SDE1), which induces chlorosis and cell death in N. benthamiana. In this study, we revealed the DEAD-box RNA helicase (DDX3) interacts with SDE1. Gene silencing study revealed that knockdown of the NbDDX3 gene triggers leaf chlorosis, mimicking the primary symptom of CLas infection in N. benthamiana. The interactions between SDE1 and NbDDX3 were localized in the cell membrane. Overexpression of SDE1 resulted in suppression of NbDDX3 gene expression in N. benthamiana, which suggests a critical role of SDE1 in modulating NbDDX3 expression. Furthermore, we verified the interaction of SDE1 with citrus DDX3 (CsDDX3), and demonstrated that the expression of the CsDDX3 gene was significantly reduced in HLB-affected yellowing and mottled leaves of citrus. Thus, we provide molecular evidence that the downregulation of the host DDX3 gene is a crucial mechanism of leaf chlorosis in HLB-affected plants. The identification of CsDDX3 as a critical target of SDE1 and its association with HLB symptom development indicates that the DDX3 gene is an important target for gene editing, to interrupt the interaction between DDX3 and SDE1, and therefore interfere host susceptibility.


Assuntos
Citrus/microbiologia , RNA Helicases DEAD-box/metabolismo , Liberibacter/patogenicidade , Necrose e Clorose das Plantas/microbiologia , RNA Polimerase Dependente de RNA/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Citrus/genética , Citrus/metabolismo , RNA Helicases DEAD-box/genética , Regulação Bacteriana da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Liberibacter/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Necrose e Clorose das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiologia
17.
Hortic Res ; 7: 140, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32922812

RESUMO

Adventitious root (AR) formation is a unique feature of plant reproduction and plays a vital role in crop production as many horticultural and forestry plants are propagated through cuttings. A growing number of reports have shown that microbes, particularly mycorrhizal fungi are able to promote AR formation, but the underlying mechanisms remain largely unclear. This study established an in vitro culture system and investigated AR formation in microcuttings of Rhododendron fortunei Lindl. inoculated with Oidiodendron maius Barron Om19, an ericoid mycorrhizal fungus strain. Hormones and precursors involved in the biosynthesis of indole-3-acetic acid (IAA) in Om19 mycelium were analyzed. Om19 was able to produce a large quantity of tryptophan (Trp) and also indole-3-pyruvate (IPA) and IAA, indicating that IAA biosynthesis in Om19 could be through a Trp-dependent pathway. After inoculation of Om19, ARs were quickly formed in microcuttings. Symbiosis related genes were activated in ARs, and Om19 effectively colonized the roots. YUC3, a key gene in plant biosynthesis of IAA and genes involved in nitrogen (N) uptake and metabolism, phosphorus (P) uptake were highly upregulated. Plants absorbed significantly greater quantity of mineral nutrients, and their growth was substantially enhanced compared to the control plants without Om19 inoculation. A working model for Om19 enhanced AR formation was proposed. The rapid formation of ARs in cuttings could be due in part to the induction of IAA biosynthesized by Om19 and also attributed to Trp catalyzed biosynthesis of IAA in plants. AR formation, in turn, provided Om19 preferred sites for colonization. Our study suggested that in addition to promoting AR formation, Om19 could potentially be used as a new biofertilizer for enhancing production of ericaceous plants, such as blueberry, cranberry, and rhododendron.

18.
Front Plant Sci ; 11: 593905, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33391306

RESUMO

Phytophthora species are notorious pathogens of several economically important crop plants. Several general elicitors, commonly referred to as Pathogen-Associated Molecular Patterns (PAMPs), from Phytophthora spp. have been identified that are recognized by the plant receptors to trigger induced defense responses in a process termed PAMP-triggered Immunity (PTI). Adapted Phytophthora pathogens have evolved multiple strategies to evade PTI. They can either modify or suppress their elicitors to avoid recognition by host and modulate host defense responses by deploying hundreds of effectors, which suppress host defense and physiological processes by modulating components involved in calcium and MAPK signaling, alternative splicing, RNA interference, vesicle trafficking, cell-to-cell trafficking, proteolysis and phytohormone signaling pathways. In incompatible interactions, resistant host plants perceive effector-induced modulations through resistance proteins and activate downstream components of defense responses in a quicker and more robust manner called effector-triggered-immunity (ETI). When pathogens overcome PTI-usually through effectors in the absence of R proteins-effectors-triggered susceptibility (ETS) ensues. Qualitatively, many of the downstream defense responses overlap between PTI and ETI. In general, these multiple phases of Phytophthora-plant interactions follow the PTI-ETS-ETI paradigm, initially proposed in the zigzag model of plant immunity. However, based on several examples, in Phytophthora-plant interactions, boundaries between these phases are not distinct but are rather blended pointing to a PTI-ETI continuum.

19.
J Environ Manage ; 232: 8-21, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30466010

RESUMO

Problem soils are referred to as those with poor physical, chemical, and biological properties that inhibit or prevent plant growth. These poor properties may be a result of soil formation processes but are largely due to inappropriate farming practices or anthropogenic pollution. The world has lost a third of its arable land due to erosion and pollution in the past 40 years. Thus, there is an urgent need for improving and remediating problem soils. As a novel multifunctional carbon material, biochar has been widely used as a soil amendment for improving soil quality. Previous reviews have summarized the characteristics of biochar, the interactions with various soil contaminants, and the effects on soil quality, soil productivity, and carbon sequestration. Relatively limited attention has been focused on the effects of biochar amendment on plant growth in problem soils. As a result, a comprehensive review of literature in the Web of Science was conducted with a focus on the effects of biochar amendment on plant growth in problems soils. The review is intended to present an overview about problem soils, biochars as functional materials for soil amendment, how amended biochars interact with soils, soil microbes, and plant roots in remediation of problem soil and improve plant growth. Additionally, existing knowledge gaps and future directions are discussed. Information gathered from this review suggests that biochar amendment is a viable way of improving the quality of problem soils and enhancing crop production. It is anticipated that further research on biochar amendment will increase our understanding on the interactions of biochar with components of problem soils, speed up our effort on soil remediation, and improve crop production in problem soils.


Assuntos
Poluentes do Solo , Solo , Carvão Vegetal , Produção Agrícola
20.
Front Plant Sci ; 8: 1318, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28804491

RESUMO

Air pollution is air contaminated by anthropogenic or naturally occurring substances in high concentrations for a prolonged time, resulting in adverse effects on human comfort and health as well as on ecosystems. Major air pollutants include particulate matters (PMs), ground-level ozone (O3), sulfur dioxide (SO2), nitrogen dioxides (NO2), and volatile organic compounds (VOCs). During the last three decades, air has become increasingly polluted in countries like China and India due to rapid economic growth accompanied by increased energy consumption. Various policies, regulations, and technologies have been brought together for remediation of air pollution, but the air still remains polluted. In this review, we direct attention to bioremediation of air pollutants by exploiting the potentials of plant leaves and leaf-associated microbes. The aerial surfaces of plants, particularly leaves, are estimated to sum up to 4 × 108 km2 on the earth and are also home for up to 1026 bacterial cells. Plant leaves are able to adsorb or absorb air pollutants, and habituated microbes on leaf surface and in leaves (endophytes) are reported to be able to biodegrade or transform pollutants into less or nontoxic molecules, but their potentials for air remediation has been largely unexplored. With advances in omics technologies, molecular mechanisms underlying plant leaves and leaf associated microbes in reduction of air pollutants will be deeply examined, which will provide theoretical bases for developing leaf-based remediation technologies or phylloremediation for mitigating pollutants in the air.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...