Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 929: 172414, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38631624

RESUMO

The integration of recombinase polymerase amplification (RPA) with CRISPR/Cas technology has revolutionized molecular diagnostics and pathogen detection due to its unparalleled sensitivity and trans-cleavage ability. However, its potential in the ecological and environmental monitoring scenarios for aquatic ecosystems remains largely unexplored, particularly in accurate qualitative/quantitative detection, and its actual performance in handling complex real environmental samples. Using zooplankton as a model, we have successfully optimized the RPA-CRISPR/Cas12a fluorescence detection platform (RPA-Cas-FQ), providing several crucial "technical tips". Our findings indicate the sensitivity of CRISPR/Cas12a alone is 5 × 109 copies/reaction, which can be dramatically increased to 5 copies/reaction when combined with RPA. The optimized RPA-Cas-FQ enables reliable qualitative and semi-quantitative detection within 50 min, and exhibits a good linear relationship between fluorescence intensity and DNA concentration (R2 = 0.956-0.974***). Additionally, we developed a rapid and straightforward identification procedure for single zooplankton by incorporating heat-lysis and DNA-barcode techniques. We evaluated the platform's effectiveness using real environmental DNA (eDNA) samples from the Three Gorges Reservoir, confirming its practicality. The eDNA-RPA-Cas-FQ demonstrated strong consistency (Kappa = 0.43***) with eDNA-Metabarcoding in detecting species presence/absence in the reservoir. Furthermore, the two semi-quantitative eDNA technologies showed a strong positive correlation (R2 = 0.58-0.87***). This platform also has the potential to monitor environmental pollutants by selecting appropriate indicator species. The novel insights and methodologies presented in this study represent a significant advancement in meeting the complex needs of aquatic ecosystem protection and monitoring.


Assuntos
Monitoramento Ambiental , Zooplâncton , Monitoramento Ambiental/métodos , Animais , Sistemas CRISPR-Cas , DNA Ambiental/análise , Técnicas de Amplificação de Ácido Nucleico/métodos , Recombinases/metabolismo
2.
Toxics ; 12(2)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38393245

RESUMO

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a conductive polymer commonly used in various technological applications. However, its impact on aquatic ecosystems remains largely unexplored. In this study, we investigated the toxicity effects of PEDOT:PSS on zebrafish. We first determined the lethal concentration (LC50) of PEDOT:PSS in zebrafish and then exposed AB-type zebrafish embryos to different concentrations of PEDOT:PSS for 120 h. Our investigation elucidated the toxicity effects of zebrafish development, including morphological assessments, heart rate measurements, behavioral analysis, transcriptome profiling, and histopathological analysis. We discovered that PEDOT:PSS exhibited detrimental effects on the early developmental stages of zebrafish, exacerbating the oxidative stress level, suppressing zebrafish activity, impairing cardiac development, and causing intestinal cell damage. This study adds a new dimension to the developmental toxicity of PEDOT:PSS in zebrafish. Our findings contribute to our understanding of the ecological repercussions of PEDOT:PSS and highlight the importance of responsible development and application of novel materials in our rapidly evolving technological landscape.

3.
Appl Microbiol Biotechnol ; 108(1): 130, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229334

RESUMO

Although the Three Gorges Dam (TGD) is the world's largest hydroelectric dam, little is known about the spatial-temporal patterns and community assembly mechanisms of meio- and micro-eukaryotes and its two subtaxa (zooplankton and zoobenthos). This knowledge gap is particularly evident across various habitats and during different water-level periods, primarily arising from the annual regular dam regulation. To address this inquiry, we employed mitochondrial cytochrome c oxidase I (COI) gene-based environmental DNA (eDNA) metabarcoding technology to systematically analyze the biogeographic pattern of the three communities within the Three Gorges Reservoir (TGR). Our findings reveal distinct spatiotemporal characteristics and complementary patterns in the distribution of meio- and micro-eukaryotes. The three communities showed similar biogeographic patterns and assembly processes. Notably, the diversity of these three taxa gradually decreased along the river. Their communities were less shaped by stochastic processes, which gradually decreased along the longitudinal riverine-transition-lacustrine gradient. Hence, deterministic factors, such as seasonality, environmental, and spatial variables, along with species interactions, likely play a pivotal role in shaping these communities. Environmental factors primarily drive seasonal variations in these communities, while hydrological conditions, represented as spatial distance, predominantly influence spatial variations. These three communities followed the distance-decay pattern. In winter, compared to summer, both the decay and species interrelationships are more pronounced. Taken together, this study offers fresh insights into the composition and diversity patterns of meio- and micro-eukaryotes at the spatial-temporal level. It also uncovers the mechanisms behind community assembly in various environmental niches within the dam-induced river-reservoir systems. KEY POINTS: • Distribution and diversity of meio- and micro-eukaryotes exhibit distinct spatiotemporal patterns in the TGR. • Contribution of stochastic processes in community assembly gradually decreases along the river. • Deterministic factors and species interactions shape meio- and micro-eukaryotic community.


Assuntos
Monitoramento Ambiental , Rios , Animais , Ecossistema , Zooplâncton , Estações do Ano , China
4.
Water Res ; 246: 120686, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37812979

RESUMO

Effective and standardized monitoring methodologies are vital for successful reservoir restoration and management. Environmental DNA (eDNA) metabarcoding sequencing offers a promising alternative for biomonitoring and can overcome many limitations of traditional morphological bioassessment. Recent attempts have even shown that supervised machine learning (SML) can directly infer biotic indices (BI) from eDNA metabarcoding data, bypassing the cumbersome calculation process of BI regardless of the taxonomic assignment of eDNA sequences. However, questions surrounding the general applicability of this taxonomy-free approach to monitoring reservoir health remain unclear, including model stability, feature selection, algorithm choice, and multi-season biomonitoring. Here, we firstly developed a novel biological integrity index (Me-IBI) that integrates multitrophic interactions and environmental information, based on taxonomy-assigned eDNA metabarcoding data. The Me-IBI can better distinguish the actual health status of the Three Gorges Reservoir (TGR) than physicochemical assessments and have a clear response to human activity. Then, taking this reliable Me-IBI as a supervised label, we compared the impact of selecting different numbers of features and SML algorithms on the stability and predictive performance of the model for predicting ecological conditions in multiple seasons using taxonomy-free eDNA metabarcoding data. We discovered that even with a small number of features, different SML algorithms can establish a stable model and obtain excellent predictive performance. Finally, we proposed a four-step strategy for standardized routine biomonitoring using SML tools. Our study firstly explores the general applicability problem of the taxonomy-free eDNA-SML approach and establishes a solid foundation for the large-scale and standardized biomonitoring application.


Assuntos
DNA Ambiental , Humanos , Biodiversidade , Monitoramento Ambiental/métodos , Código de Barras de DNA Taxonômico/métodos , Aprendizado de Máquina Supervisionado , Ecossistema
5.
Environ Pollut ; 337: 122524, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37683759

RESUMO

Chronic kidney disease of unknown etiology (CKDu) is an endemic disease in the dry zone of farming communities, Sri Lanka. The drinking water in a CKDu prevalent area contains a high concentration of F-, hardness and other environmental pollutants, including heavy metals and microcystin, which are considered possible etiology of CKDu in these areas. Here, multi-omics data with host transcriptome, metabolome and gut microbiomes were obtained using simulated local drinking water of Sri Lanka after their exposure to adult zebrafish. Based on an integrated multi-omics analysis in the context of host physiology in the kidney injury samples with different pathologic grades, two common pathways necroptosis and purine metabolism were identified as potentially important pathways that affect kidney injury. The key metabolite acetyl adenylate in the purine metabolism pathway was significantly positively correlated with Comamonas (rho = 0.72) and significantly negatively correlated with Plesiomonas (rho = -0.58). This crucial metabolite and two key gut bacteria genera may not only be potential markers but also potential therapeutic targets in the uric acid metabolic pathway, which is an important factor in the pathogenesis of acute kidney injury (AKI) in general, as well as of chronic kidney disease (CKD). Based on this, we revealed the urea metabolism pathway of kidney injury in zebrafish and provided a new avenue for the treatment of CKDu in Sri Lanka.


Assuntos
Água Potável , Insuficiência Renal Crônica , Animais , Água Potável/análise , Peixe-Zebra , Doenças Renais Crônicas Idiopáticas , Multiômica , Insuficiência Renal Crônica/epidemiologia , Sri Lanka/epidemiologia , Purinas
6.
iScience ; 26(9): 107519, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37636063

RESUMO

Environmental DNA (eDNA) research holds great promise for improving biodiversity science and conservation efforts by enabling worldwide species censuses in near real-time. Current eDNA methods face challenges in detecting low-abundance ecologically important species. In this study, we used isothermal recombinase polymerase amplification (RPA)-CRISPR/Cas detection to test Ctenopharyngodon idella. RPA-CRISPR-Cas12a detected 6.0 eDNA copies/µL within 35 min. Ecologically rare species were identified in the Three Gorges Reservoir Area (TGRA) using functional distinctiveness and geographical restrictiveness, with seven fish species (9%) classified as potentially ecologically rare including three species in this investigation. RPA-CRISPR/Cas12a-FQ outperformed high-throughput sequencing (HTS) and qPCR in detecting low-abundance eDNA (AUC = 0.883∗∗). A significant linear correlation (R2 = 0.682∗∗) between RPA-CRISPR/Cas12a-FQ and HTS quantification suggests its potential for predicting species abundance and enhancing eDNA-based fish biodiversity monitoring. This study highlights the value of RPA-CRISPR/Cas12a-FQ as a tool for advancing eDNA research and conservation efforts.

7.
Environ Pollut ; 332: 121967, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37290634

RESUMO

Chronic kidney disease with uncertain etiology (CKDu) in Sri Lanka has attracted much attention as a global health issue. However, how environmental factors in local drinking water induce kidney damage in organisms is still elusive. We investigated multiple environmental factors including water hardness and fluoride (HF), heavy metals (HM), microcystin-LR (MC-LR), and their combined exposure (HFMM) to elucidate their toxic effects on CKDu risk in zebrafish. Acute exposure affected renal development and inhibited the fluorescence of Na, K-ATPase alpha1A4:GFP zebrafish kidney. Chronic exposure influenced the body weight of both genders of adult fish and induced kidney damage by histopathological analyses. Furthermore, the exposure significantly disturbed differential expression genes (DEGs), diversity and richness of gut microbiota, and critical metabolites related to renal functions. The transcriptomic analysis revealed that kidney-related DEGs were linked with renal cell carcinoma, proximal tubule bicarbonate reclamation, calcium signaling pathway, and HIF-1 signaling pathway. The significantly disrupted intestinal microbiota was closely related to the environmental factors and H&E score, which demonstrated the mechanisms of kidney risks. Notably, the Spearman correlation analysis indicated that the changed bacteria such as Pseudomonas, Paracoccus, and ZOR0006, etc were significantly connected to the DEGs and metabolites. Therefore, the assessment of multiple environmental factors provided new insights on "bio-markers" as potential therapies of the target signaling pathways, metabolites, and gut bacteria to monitor or protect residents from CKDu.


Assuntos
Água Potável , Insuficiência Renal Crônica , Animais , Masculino , Feminino , Peixe-Zebra , Sri Lanka , Água Potável/análise , Fluoretos/análise , Insuficiência Renal Crônica/etiologia
8.
Sci Total Environ ; 838(Pt 2): 156048, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35597342

RESUMO

Staphylococcus aureus (S. aureus) is an important opportunistic human and animal pathogen that can cause a wide diversity of infections. Due to its environmental health risks, it is crucial to establish a time-saving, high-throughput, and highly sensitive technique for water quality surveillance. In this study, we developed a novel method to detect S. aureus in the water environment based on recombinase polymerase amplification (RPA) and CRISPR/Cas12a. This method utilizes isothermal amplification of nucleic acids and the trans-cleavage activity of the CRISPR/Cas12a system to generate fluorescence signals with a single-stranded DNA-fluorophore-quencher (ssDNA-FQ) reporter and a naked-eye detected lateral flow assay (LFA). Our RPA-CRISPR/Cas12a detection system can reduce the detection time to 35 min and enhance the high-throughput detection threshold to ≥5 copies of pathogen DNA, which is more sensitive than that of reported. Moreover, in the lower reaches of the Jialing River in Chongqing, China, 10 water samples from the mainstream and 7 ones from tributaries were successfully monitored S. aureus for less than 35 min using RPA-CRISPR/Cas12a detection system. Taken together, a novel high-throughput RPA-CRISPR detection was established and firstly applied for sensitively monitoring S. aureus in the natural water environment.


Assuntos
Recombinases , Infecções Estafilocócicas , Animais , Sistemas CRISPR-Cas , Técnicas de Amplificação de Ácido Nucleico/métodos , Recombinases/genética , Staphylococcus aureus/genética
9.
J Hazard Mater ; 403: 123604, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32781281

RESUMO

The toxicity of Cr(VI) was widely investigated, but the defense mechanism against Cr(III) in bacteria are seldom reported. Here, we found that Cr(III) inhibited bacterial growth and induced reactive oxygen species (ROS). After exposure to Cr(III), loss of sodA not only led to the excessive generation of ROS, but also enhanced the level of lipid peroxidation and reduced the GSH level, indicating that the deficiency of Mn-SOD decreased the bacterial resistance ability against Cr(III). The adverse effects of oxidative stress caused by Cr(III) could be recovered by the rescue of Mn-SOD in the sodA-deficient strain. Besides the oxidative stress, Cr(III) could cause the bacterial morphology variation, which was distinct between the wild-type and the sodA-deficient strains due to the differential expressions of Z-ring division genes. Moreover, Mn-SOD might prevent Cr(III) from oxidation on the bacterial surface by combining with Cr(III). Taken together, our results indicated that the Mn-SOD played a vital role in regulating the stress resistance, expression of cell division-related genes, bacterial morphology, and chemistry valence state of Cr. Our findings firstly provided a more in-depth understanding of Cr(III) toxicity and bacterial defense mechanism against Cr(III).


Assuntos
Estresse Oxidativo , Superóxido Dismutase , Bactérias/genética , Bactérias/metabolismo , Peroxidação de Lipídeos , Oxirredução , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...