Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1412599, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38993490

RESUMO

The generation of acid mine drainage (AMD) characterized by high acidity and elevated levels of toxic metals primarily results from the oxidation and dissolution of sulfide minerals facilitated by microbial catalysis. Although there has been significant research on microbial diversity and community composition in AMD, as well as the relationship between microbes and heavy metals, there remains a gap in understanding the microbial community structure in uranium-enriched AMD sites. In this paper, water samples with varying levels of uranium pollution were collected from an abandoned stone coal mine in Jiangxi Province, China during summer and winter, respectively. Geochemical and high-throughput sequencing analyses were conducted to characterize spatiotemporal variations in bacterial diversity and community composition along pollution groups. The results indicated that uranium was predominantly concentrated in the AMD of new pits with strong acid production capacity, reaching a peak concentration of 9,370 µg/L. This was accompanied by elevated acidity and concentrations of iron and total phosphorus, which were identified as significant drivers shaping the composition of bacterial communities, rather than fluctuations in seasonal conditions. In an extremely polluted environment (pH < 3), bacterial diversity was lowest, with a predominant presence of acidophilic iron-oxidizing bacteria (such as Ferrovum), and a portion of acidophilic heterotrophic bacteria synergistically coexisting. As pollution levels decreased, the microbial community gradually evolved to cohabitation of various pH-neutral heterotrophic species, ultimately reverting back to background level. The pH was the dominant factor determining biogeochemical release of uranium in AMD. Acidophilic and uranium-tolerant bacteria, including Ferrovum, Leptospirillum, Acidiphilium, and Metallibacterium, were identified as playing key roles in this process through mechanisms such as enhancing acid production rate and facilitating organic matter biodegradation.

2.
World J Clin Cases ; 12(16): 2862-2868, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38899292

RESUMO

BACKGROUND: Rectal mucosal melanoma is a rare and highly aggressive disease. Common symptoms include anal pain, an anal mass, or bleeding. As such, the disease is usually detected on rectal examination of patients with other suspected anorectal diseases. However, due to its rarity and nonspecific symptoms, melanoma of the rectal mucosa is easily misdiagnosed. CASE SUMMARY: This report describes the case of a 58-year-old female patient who presented with a history of blood in her stool for the prior one or two months, without any identifiable cause. During colonoscopy, a bulge of approximately 2.2 cm × 2.0 cm was identified. Subsequently, the patient underwent endoscopic ultrasound (EUS) to characterize the depth of invasion of the lesions. EUS suggested a hypoechoic mucosal mass with involvement of the submucosal layer and heterogeneity of the internal echoes. Following surgical intervention, the excised tissue samples were examined and confirmed to be rectal malignant melanoma. The patient recovered well with no evidence of recurrence during follow-up. CONCLUSION: This case shows that colonoscopy with EUS and pathological examination can accurately diagnose rare cases of rectal mucosal melanoma.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...