Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38893782

RESUMO

This study focuses on the heavily Mg-doped GaN in which the passivation effect of hydrogen and the compensation effect of nitrogen vacancies (VN) impede its further development. To investigate those two factors, H ion implantation followed by thermal annealing was performed on the material. The evolution of relevant defects (H and VN) was revealed, and their distinct behaviors during thermal annealing were compared between different atmospheres (N2/NH3). The concentration of H and its associated yellow luminescence (YL) band intensity decrease as the thermal annealing temperature rises, regardless of the atmosphere being N2 or NH3. However, during thermal annealing in NH3, the decrease in H concentration is notably faster compared to N2. Furthermore, a distinct trend is observed in the behavior of the blue luminescence (BL) band under N2 and NH3. Through a comprehensive analysis of surface properties, we deduce that the decomposition of NH3 during thermal annealing not only promotes the out-diffusion of H ions from the material, but also facilitates the repair of VN on the surface of heavily Mg-doped GaN. This research could provide crucial insights into the post-growth process of heavily Mg-doped GaN.

2.
Oxid Med Cell Longev ; 2022: 9325973, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965682

RESUMO

Rosin derivatives such as dehydroabietic acid and dehydroabietic amine belonging to diterpenoids have similar structure with androgen that inhibited the occurrence and development of prostate cancer. In this study, the effects and possible mechanism of the rosin derivative IDOAMP on prostate cancer were investigated. Our results showed that IDOAMP effectively inhibited cell viabilities of LNCaP, PC3, and DU145 prostate cells. After the treatment with IDOAMP, the levels of cleaved-PARP, LC3BII/I, and HMGB1 were increased, whereas the expression of GPX4 was decreased. Interestingly, cell viability was reversed by the supplements of necrostatin-1 and necrosulfonamide. Meanwhile, the IDOAMP downregulated the expression of human Aurora kinase A that was overexpressed in prostate cancer. In addition, co-IP results showed that IDOAMP inhibited the binding of Aurora kinase A to the receptor-interacting serine/threonine kinase 1 (RIPK1) and RIPK3. However, the binding of RIPK1 to FADD, RIPK3, or MLKL was significantly promoted. Further studies showed that the phosphorylation levels of RIPK1, RIPK, and MLKL were increased in a concentration-dependent manner. In in vivo model, IDOAMP reduced the tumor volumes and weights. In conclusion, IDOAMP directly inhibited Aurora kinase A and promoted the RIPK1/RIPK3/MLKL necrosome activation to inhibit the prostate cancer.


Assuntos
Aurora Quinase A , Neoplasias da Próstata , Aurora Quinase A/metabolismo , Humanos , Masculino , Neoplasias da Próstata/tratamento farmacológico , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Resinas Vegetais , Transdução de Sinais
3.
Asian J Androl ; 24(3): 323-331, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34747725

RESUMO

We investigated the therapeutic effects of superoxide dismutase (SOD) from thermophilic bacterium HB27 on chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) and its underlying mechanisms. A Sprague-Dawley rat model of CP/CPPS was prepared and then administered saline or Thermus thermophilic (Tt)-SOD intragastrically for 4 weeks. Prostate inflammation and fibrosis were analyzed by hematoxylin and eosin staining, and Masson staining. Alanine transaminase (ALT), aspartate transaminase (AST), serum creatinine (CR), and blood urea nitrogen (BUN) levels were assayed for all animals. Enzyme-linked immunosorbent assays (ELISA) were performed to analyze serum cytokine concentrations and tissue levels of malondialdehyde, nitric oxide, SOD, catalase, and glutathione peroxidase. Reactive oxygen species levels were detected using dichlorofluorescein diacetate. The messenger ribonucleic acid (mRNA) expression of tissue cytokines was analyzed by reverse transcription polymerase chain reaction (RT-PCR), and infiltrating inflammatory cells were examined using immunohistochemistry. Nuclear factor-κB (NF-κB) P65, P38, and inhibitor of nuclear factor-κBα (I-κBα) protein levels were determined using western blot. Tt-SOD significantly improved histopathological changes in CP/CPPS, reduced inflammatory cell infiltration and fibrosis, increased pain threshold, and reduced the prostate index. Tt-SOD treatment showed no significant effect on ALT, AST, CR, or BUN levels. Furthermore, Tt-SOD reduced inflammatory cytokine expression in prostate tissue and increased antioxidant capacity. This anti-inflammatory activity correlated with decreases in the abundance of cluster of differentiation 3 (CD3), cluster of differentiation 45 (CD45), and macrophage inflammatory protein 1α (MIP1α) cells. Tt-SOD alleviated inflammation and oxidative stress by reducing NF-κB P65 and P38 protein levels and increasing I-κBα protein levels. These findings support Tt-SOD as a potential drug for CP/CPPS.


Assuntos
Dor Crônica , Prostatite , Animais , Citocinas/metabolismo , Fibrose , Humanos , Inflamação/metabolismo , Masculino , NF-kappa B/metabolismo , Dor Pélvica/patologia , Prostatite/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase , Síndrome
4.
Adv Mater ; 33(15): e2006722, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33629762

RESUMO

The research on metal halide perovskite light-emitting diodes (PeLEDs) with green and infrared emission has demonstrated significant progress in achieving higher functional performance. However, the realization of stable pure-blue (≈470 nm wavelength) PeLEDs with increased brightness and efficiency still constitutes a considerable challenge. Here, a novel acid etching-driven ligand exchange strategy is devised for achieving pure-blue emitting small-sized (≈4 nm) CsPbBr3 perovskite quantum dots (QDs) with ultralow trap density and excellent stability. The acid, hydrogen bromide (HBr), is employed to etch imperfect [PbBr6 ]4- octahedrons, thereby removing surface defects and excessive carboxylate ligands. Subsequently, didodecylamine and phenethylamine are successively introduced to bond the residual uncoordinated sites of the QDs and attain in situ exchange with the original long-chain organic ligands, resulting in near-unity quantum yield (97%) and remarkable stability. The QD-based PeLEDs exhibit pure-blue electroluminescence at 470 nm (corresponding to the Commission Internationale del'Eclairage (CIE) (0.13, 0.11) coordinates), an external quantum efficiency of 4.7%, and a remarkable luminance of 3850 cd m-2 , which is the highest brightness reported so far for pure-blue PeLEDs. Furthermore, the PeLEDs exhibit robust durability, with a half-lifetime exceeding 12 h under continuous operation, representing a record performance value for blue PeLEDs.

5.
Opt Express ; 23(9): 11334-40, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25969228

RESUMO

We demonstrated stimulated emission at 288 nm from a silicon-doped AlGaN-based multiple-quantum-well (MQW) ultraviolet (UV) laser grown on sapphire. The optical pumping threshold energy density of the UV laser was 64 mJ/cm2, while lasing behavior was not observed in undoped AlGaN MQWs. This means silicon doping could effectively reduce the lasing threshold of UV lasers, and the mechanism was studied showing that the silicon-doped AlGaN MQWs had a 41% higher internal quantum efficiency (IQE) compared with the undoped one. The transmission electron microscopy characterization showed that silicon doping explicitly improved the crystallographic quality of MQWs. Calculation of the polarization charge in the MQWs further revealed that the advantage of better structure quality outweighed the reduction of internal polarization field by Si doping for the IQE enhancement and successful stimulated emission.

6.
Opt Express ; 22 Suppl 5: A1284-91, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25322183

RESUMO

We reported that the peak efficiency together with the efficiency droop in InGaN-based light emitting diodes could be effectively modified through a simple and low-cost etch-regrown process in n-GaN layer. The etched n-GaN template contained pyramid arrays with inclined side planes. The following lateral overgrowth process from the etched n-GaN template substantially reduced the edge dislocation density and residential compressive strain in epilayers. The efficiency droop of LED samples thus could be modified due to the reduced polarization field, resulting from the strain relaxation in epilayers. What is more, the peak efficiency and reverse current leakage were also modified due to the reduction of dislocations.

7.
Opt Express ; 22 Suppl 2: A320-7, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24922241

RESUMO

Nanopillar AlGaN/GaN multiple quantum wells ultraviolet light-emitting diodes (LEDs) were fabricated by nanosphere lithography and dry-etching. The optical properties of the nanopillar LEDs were characterized by both temperature-dependent and time-resolved photoluminescence measurements. Compared to an as-grown sample, the nanopillar sample has a PL emission peak blue-shift of 7 meV, a 42% enhanced internal quantum efficiency at room temperature and a reduced radiative recombination lifetime from 870 picosecond to 621 picosecond at 7K. These results are directly from the suppressed quantum confined stark effect that is due to the strain relaxation in the nanopillar MQWs, further revealed by micro-Raman measurement. Additionally, finite-difference time domain simulation also proves better light extraction efficiency in the nanopillar LEDs.

8.
Opt Express ; 22 Suppl 3: A1001-8, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24922364

RESUMO

Polarization-reversed electron-blocking structure, which had negative polarization charges localized at the interface between the last quantum barrier (LQB) and electron-blocking layer (EBL), was demonstrated to remarkably improve the light-emitting efficiency of GaN-based blue light-emitting diodes (LEDs) numerically and experimentally. The improvement was attributed to the enhanced electron-blocking effectiveness by the elevated conduction band nearby the LQB/EBL interface. Nevertheless, the efficiency droop was not mitigated because the decrease of electron-leakage was accompanied by the increase of Auger recombination.

9.
Opt Express ; 22(5): A320-7, 2014 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-24800288

RESUMO

Nanopillar AlGaN/GaN multiple quantum wells ultraviolet light-emitting diodes (LEDs) were fabricated by nanosphere lithography and dry-etching. The optical properties of the nanopillar LEDs were characterized by both temperature-dependent and time-resolved photoluminescence measurements. Compared to an as-grown sample, the nanopillar sample has a PL emission peak blue-shift of 7 meV, a 42% enhanced internal quantum efficiency at room temperature and a reduced radiative recombination lifetime from 870 picosecond to 621 picosecond at 7K. These results are directly from the suppressed quantum confined stark effect that is due to the strain relaxation in the nanopillar MQWs, further revealed by micro-Raman measurement. Additionally, finite-difference time domain simulation also proves better light extraction efficiency in the nanopillar LEDs.

10.
Opt Express ; 22 Suppl 6: A1596-603, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25607317

RESUMO

A surface plasmon (SP)-enhanced nanoporous GaN-based green LED based on top-down processing technology has been successfully fabricated. This SP-enhanced LED consists of nanopores passing through the multiple quantum wells (MQWs) region, with Ag nanorod array filled in the nanopores for SP-MQWs coupling and thin Al(2)O(3) passivation layer for electrical protection. Compared with nanoporous LED without Ag nanorods, the electroluminescence (EL) peak intensity for the SP-enhanced LED was greatly enhanced by 380% and 220% at an injection current density of 1 and 20A/cm(2), respectively. Our results show that the increased EL intensity is mainly attributed to the improved internal quantum efficiency of LED due to the SP coupling between Ag nanorods and MQWs.


Assuntos
Óxido de Alumínio/química , Gálio/química , Iluminação/instrumentação , Nanopartículas Metálicas/química , Semicondutores , Ressonância de Plasmônio de Superfície/instrumentação , Adsorção , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Nanopartículas Metálicas/ultraestrutura , Nanoporos/ultraestrutura , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...