Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1209834, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711312

RESUMO

Cymbidium sinense is one of the most important traditional Chinese Orchids due to its unique and highly ornamental floral organs. Although the ABCDE model for flower development is well-established in model plant species, the precise roles of these genes in C. sinense are not yet fully understood. In this study, four SEPALLATA-like genes were isolated and identified from C. sinense. CsSEP1 and CsSEP3 were grouped into the AGL9 clade, while CsSEP2 and CsSEP4 were included in the AGL2/3/4 clade. The expression pattern of CsSEP genes showed that they were significantly accumulated in reproductive tissues and expressed during flower bud development but only mildly detected or even undetected in vegetative organs. Subcellular localization revealed that CsSEP1 and CsSEP4 were localized to the nucleus, while CsSEP2 and CsSEP3 were located at the nuclear membrane. Promoter sequence analysis predicted that CsSEP genes contained a number of hormone response elements (HREs) and MADS-box binding sites. The early flowering phenotype observed in transgenic Arabidopsis plants expressing four CsSEP genes, along with the expression profiles of endogenous genes, such as SOC1, LFY, AG, FT, SEP3 and TCPs, in both transgenic Arabidopsis and C. sinense protoplasts, suggested that the CsSEP genes played a regulatory role in the flowering transition by influencing downstream genes related to flowering. However, only transgenic plants overexpressing CsSEP3 and CsSEP4 caused abnormal phenotypes of floral organs, while CsSEP1 and CsSEP2 had no effect on floral organs. Protein-protein interaction assays indicated that CsSEPs formed a protein complex with B-class CsAP3-2 and CsSOC1 proteins, affecting downstream genes to regulate floral organs and flowering time. Our findings highlighted both the functional conservation and divergence of SEPALLATA-like genes in C. sinense floral development. These results provided a valuable foundation for future studies of the molecular network underlying floral development in C. sinense.

2.
Front Plant Sci ; 13: 969010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968117

RESUMO

Transcription factors (TFs) of the WRKY family play pivotal roles in defense responses and secondary metabolism of plants. Although WRKY TFs are well documented in numerous plant species, no study has performed a genome-wide investigation of the WRKY gene family in Cymbidium sinense. In the present work, we found 64 C. sinense WRKY (CsWRKY) TFs, and they were further divided into eight subgroups. Chromosomal distribution of CsWRKYs revealed that the majority of these genes were localized on 16 chromosomes, especially on Chromosome 2. Syntenic analysis implied that 13 (20.31%) genes were derived from segmental duplication events, and 17 orthologous gene pairs were identified between Arabidopsis thaliana WRKY (AtWRKY) and CsWRKY genes. Moreover, 55 of the 64 CsWRKYs were detectable in different plant tissues in response to exposure to plant hormones. Among them, Group III members were strongly induced in response to various hormone treatments, indicating their potential essential roles in hormone signaling. We subsequently analyzed the function of CsWRKY18 in Group III. The CsWRKY18 was localized in the nucleus. The constitutive expression of CsWRKY18 in Arabidopsis led to enhanced sensitivity to ABA-mediated seed germination and root growth and elevated plant tolerance to abiotic stress within the ABA-dependent pathway. Overall, our study represented the first genome-wide characterization and functional analysis of WRKY TFs in C. sinense, which could provide useful clues about the evolution and functional description of CsWRKY genes.

3.
Plant Biotechnol J ; 19(12): 2501-2516, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34342129

RESUMO

The Orchidaceae is of economic and ecological importance and constitutes ˜10% of all seed plant species. Here, we report a genome physical map for Cymbidium sinense, a well-known species belonging to genus Cymbidium that has thousands of natural variation varieties of flower organs, flower and leaf colours and also referred as the King of Fragrance, which make it arose into a unique cultural symbol in China. The high-quality chromosome-scale genome assembly was 3.52 Gb in size, 29 638 protein-coding genes were predicted, and evidence for whole-genome duplication shared with other orchids was provided. Marked amplification of cytochrome- and photosystem-related genes was observed, which was consistent with the shade tolerance and dark green leaves of C. sinense. Extensive duplication of MADS-box genes, and the resulting subfunctional and expressional differentiation, was associated with regulation of species-specific flower traits, including wild-type and mutant-type floral patterning, seasonal flowering and ecological adaption. CsSEP4 was originally found to positively regulate gynostemium development. The CsSVP genes and their interaction proteins CsAP1 and CsSOC1 were significantly expanded and involved in the regulation of low-temperature-dependent flowering. Important genetic clues to the colourful leaf traits, purple-black flowers and volatile trait in C. sinense were also found. The results provide new insights into the molecular mechanisms of important phenotypic traits of Cymbidium and its evolution and serve as a powerful platform for future evolutionary studies and molecular breeding of orchids.


Assuntos
Regulação da Expressão Gênica de Plantas , Orchidaceae , Flores , Orchidaceae/genética , Folhas de Planta/genética , Especificidade da Espécie
4.
Genome Announc ; 6(10)2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29519841

RESUMO

The complete genome of Trichoplusia ni ascovirus 6b (TnAV-6b) was sequenced for the first time. The TnAV-6b isolate, which has its closest phylogenetic relationship with the TnAV-6a isolate, has a circular genome of 185,664 bp, with a G+C content of 46.0% and 178 predicted open reading frames.

5.
J Invertebr Pathol ; 122: 40-3, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25149038

RESUMO

The complete genome sequence of Heliothis virescens ascovirus 3f (HvAV-3f) was obtained. The HvAV-3f genome has a circular genome of 198,157bp with a G+C content of 46.0%, and encodes 190 open reading frames (ORFs) longer than 69 amino acids. Two major homologous regions (hrs) and 29 'baculovirus repeat ORFs' (bro) were found in the genome. BLAST analyses revealed that three HvAV-3f genes were homologous to that of lepidopteran insects. Nine ORFs were unique to HvAV-3f, in which two ORFs showed significant levels of similarity to genes that have not been previously described for ascoviruses in the Genbank database.


Assuntos
Ascoviridae/genética , DNA Viral/genética , Genoma Viral/genética , Zea mays/virologia , Animais , DNA Viral/análise , Larva/virologia , Análise de Sequência de DNA , Estados Unidos
6.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-673599

RESUMO

Objective To investigate the number of eosinophils in peripheral blood and total serum immunoglobulin E levels from children during infection of mycoplasma pneumoniae,which may elucidate what mycoplasma pneumoniae plays a role in persistent cough and asthma onset.Methods The number of eosinophils in peripheral blood was counted under microscope and total serum immunoglobulin E levels were determined by ELISA in 20 children with mycoplasmal infection ,30 patients with asthma and 25 control subjects.Results The number of eosinophils and total serum immunoglobulin E levels during mycoplasmal infection were significantly higher than in control group,and lower than in asthma.Conclusion The high eosinophil counts and total serum immunoglobulin E induced by mycoplasma pnemoniae play a key role in persistent cough and asthma attack.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...