Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1298418, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239359

RESUMO

Background: Preclinical studies demonstrated that immune checkpoint inhibitors combined with antiangiogenic drugs have a synergistic anti-tumor effect. This present phase II trial aimed to evaluate the efficacy and safety of apatinib combined with camrelizumab in patients with recurrent/metastatic nasopharyngeal carcinoma (RM-NPC). Methods: Patients with RM-NPC were administered with apatinib at 250 mg orally once every day and with camrelizumab at 200 mg via intravenous infusion every 2 weeks until the disease progressed or toxicity became unacceptable. The objective response rate (ORR) was the primary endpoint, assessed using RECIST version 1.1. Progression-free survival (PFS), overall survival (OS), disease control rate (DCR) and safety were the key secondary endpoints. This study was registered with ClinicalTrials.gov, NCT04350190. Results: This study enrolled 26 patients with RM-NPC between January 14, 2021 and September 15, 2021. At data cutoff (March 31, 2023), the median duration of follow-up was 16 months (ranging from 1 to 26 months). The ORR was 38.5% (10/26), the disease control rate (DCR) was 61.5% (16/26), and the median PFS was 6 months (IQR 3.0-20.0). The median OS was 14 months (IQR 6.0-21.25). Treatment-related grade 3 or 4 adverse events occurred in seven (26.9%) patients, and comprised anemia (7.7%), stomatitis (3.8%), headache (3.8%), pneumonia (7.7%), and myocarditis (3.8%). There were no serious treatment-related adverse events or treatment-related deaths. Conclusion: In patients with RM-NPC, apatinib plus camrelizumab showed promising antitumor activity and manageable toxicities.


Assuntos
Anticorpos Monoclonais Humanizados , Neoplasias Nasofaríngeas , Piridinas , Humanos , Carcinoma Nasofaríngeo/tratamento farmacológico , Estudos Prospectivos , Neoplasias Nasofaríngeas/tratamento farmacológico
2.
Polymers (Basel) ; 11(12)2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31783562

RESUMO

Tremendous efforts have been made toward the development of lithium-sulfur (Li-S) batteries as one of the most reasonable solutions to the rapidly increasing demand for portable electronic devices and electric vehicles, owing to their high cost-efficiency and theoretical energy density. However, the shuttle effect caused by soluble polysulfides is generally considered to be an insurmountable challenge, which can significantly reduce the battery lifecycle and sulfur utilization. Here, we report a lignin nanoparticle-coated Celgard (LC) separator to alleviate this problem. The LC separator enables abundant electron-donating groups and is expected to induce chemical binding of polysulfides to hinder the shuttle effect. When a sulfur-containing commercially available acetylene black (approximately 73.8 wt% sulfur content) was used as the cathode without modification, the Li-S battery with the LC separator presented much enhanced cycling stability over that with the Celgard separator for over 500 cycles at a current density of 1 C. The strategy demonstrated in this study is expected to provide more possibilities for the utilization of low-cost biomass-derived nanomaterials as separators for high-performance Li-S batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...