Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Thorac Dis ; 16(5): 3051-3060, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38883674

RESUMO

Background: Chronic obstructive pulmonary disease (COPD) is significantly influenced by oxidative stress. Recent studies have elucidated the anti-oxidative stress properties of peroxisome proliferator-activated receptors γ (PPARγ), augmenting its known anti-inflammatory effects. The exact influence of PPARγ on oxidative stress in COPD remains elusive. This study aimed to investigate the potential mechanism by which PPARγ counteracts the oxidative stress instigated by cigarette smoke in macrophages. Methods: Macrophages were cultured and exposed to 1% cigarette smoke extract (CSE), 1 µg/mL erythromycin (EM), and 10 µmol/mL GW9662 (a PPARγ antagonist). Reactive oxygen species (ROS) in macrophages was identified using fluorescent microscopy. PPARγ expression was ascertained through reverse transcription-polymerase chain reaction (RT-PCR) and Western blot techniques. The superoxide dismutase (SOD) in macrophage supernatant was measured by enzyme linked immunosorbent assay (ELISA), as was malondialdehyde (MDA). Results: Our results shown that cigarette smoke stimulated macrophages to increase ROS release, decrease the expression of PPARγ, increase the expression of MDA and decrease the expression of SOD. After PPARγ inhibitor acted on macrophages stimulated by cigarette smoke, the expression of MDA was inhibited and the content of SOD increased. When EM was used to treat macrophages stimulated by cigarette smoke, the expression of ROS decreased, the expression of PPARγ increased, the expression of MDA decreased and the expression of SOD increased. Conclusions: This study suggests that PPARγ plays an anti-oxidative role by inhibiting the expression of MDA and promoting the expression of SOD. Cigarette smoke induces oxidative stress by inhibiting PPARγ pathway. EM inhibits oxidative stress by activating PPARγ pathway.

2.
Heliyon ; 9(11): e21380, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37964850

RESUMO

This study analyzes the performance of the Shanghai Composite Index, S&P 500 index, WTI oil price, and LBMA gold price when wars took place, especially the Russia-Ukraine conflict. We employ empirical methods to explore the stability, instantaneous shock, and short-term shock regarding the abovementioned financial assets. We first adopt the event study method to ascertain whether the cumulative abnormal returns of the selected assets are significant when wars break out. Then, we use the permutation test to examine the significance of price level changes. Results show that only the Shanghai Composite Index is relatively stable. Second, the difference-in-differences model indicates that the 3 unstable assets all suffered positive shocks in their price levels within several days after the Russia-Ukraine conflict broke out. The parallel trend test confirms the validity of establishing the difference-in-differences model. Third, regression discontinuity is designed to measure the impact in a longer event window, suggesting the robustness of conclusions of the difference-in-differences model and revealing an upward trend before the conflict and a downward trend after the conflict of the financial assets. The study suggests that investors consider adjustments to investment strategies and governments take precautions to diminish the risk of the outbreak of wars.

3.
Exp Ther Med ; 26(3): 454, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37614422

RESUMO

Cytomegalovirus (CMV) infection is one of the most common infectious complications following hematopoietic stem cell transplantation (HSCT); however, cases involving multiple organs at the same time are rare. The present study describes a case of CMV pneumonia combined with CMV DNAemia and CMV cystitis after HSCT. A 33-year-old male patient with acute myeloid leukemia was treated with HSCT. The first month after HSCT, the patient developed a cough and shortness of breath. At 2 months post-HSCT, the patient developed hematuria. The CMV DNA levels in the blood and urine were elevated; bronchoalveolar lavage fluid (BALF) was also positive for CMV DNA. Heterotypic cells exhibiting a large nuclear morphology were observed in the BALF and bronchial brushes. Recurrent and progressive ground-glass opacities were evident on chest computed tomography. The patient was diagnosed with CMV pneumonia complicated by CMV DNAemia and CMV cystitis, and was treated with a combination of ganciclovir and foscarnet, along with immunoglobulin therapy. The patient was cured and discharged. It was determined that the CMV DNA in the blood was inconsistent with that in the BALF, which delayed the early diagnosis of CMV pneumonia. The association between T-cell immune function and the therapeutic efficacy for CMV multi-organ infection following HSCT is known to be significant. Moreover, the timely administration of ganciclovir and foscarnet in combination with immunoglobulin therapy demonstrated favorable clinical outcomes.

4.
Foods ; 12(11)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37297515

RESUMO

Food security is critical for socioeconomic development. In grassland areas, inappropriate food consumption patterns can cause irreversible damage to vulnerable local ecosystems. This study aims to examine the household dietary diversity status and development trend over the past 20 years in Chinese herder communities. We draw on a cross-sectional dataset of 230 households involving 652 family members from the Xilin Gol Grassland areas in North China. Household dietary diversity was assessed using the household dietary diversity score (HDDS), which was calculated based on 12 food groups. Results show that HDDS increased from 3.74 in 1999 to 5.92 in 2019, with an annual average growth rate of 2.45% during the past 20 years. The increase in plant-based food scores made a major contribution to the HDDS improvement. The variations in household dietary diversity status between pastoral areas and agro-pastoral areas showed differences among different types of grassland in arid and semiarid transitional zones. It is worth paying more attention to monitoring the main impact factors that affect HDDS and how these changes might impact the local ecosystem, which will benefit regional sustainable development.

5.
J Mater Chem B ; 11(28): 6581-6594, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37358033

RESUMO

Peroxidase (POD)-like nanozymes have been found to act as nanoreactors for the generation of reactive oxygen species (ROS) to resolve drug resistance in the tumor microenvironment (TME). Amplifying cellular oxidative stress is considered to be a drug-free strategy to efficiently induce apoptosis in tumor cells. However, the limited content of intracellular hydrogen peroxide (H2O2) extremely restricts the performance of POD-like nanozymes to amplify cellular oxidative stress. Moreover, additional operational processes combined with exogenous reagents to achieve oxidative stress lead to a dilemma of extra cytotoxicity. Here, an integrated iron-porphyrin-MOF-based nanozyme composite named HA@GOx@PCN-224(Fe) (HGPF) was precisely designed and constructed. Generally, the POD-like nanozyme PCN-224(Fe) was used as a platform to immobilize glucose oxidase (GOx), and further embedded with hyaluronic acid (HA) to enable the targeting ability of tumor cells. When endocytosed by tumor cells, intracellular glucose was oxidized to H2O2 and gluconic acid catalyzed by immobilized GOx of HGPF. Afterwards, inspired by heme analogs, H2O2 was catalyzed by iron-porphyrin active sites of the HGPF nanozyme to generate hydroxyl radicals (˙OH). Under light irradiation, the iron-porphyrin of HGPF acted as a photosensitizer to facilely produce singlet oxygen (1O2). Such a synergistic generation of ROS strikingly amplified oxidative stress and induced severe apoptosis in tumor cells. HGPF was expected to integrate intracellular oxygen sources and overcome the dilemma of limited intracellular H2O2 content. Consequently, HGPF was constructed as an integrated nanoreactor to simultaneously achieve light-enhanced catalytic oxidation cascades, providing a promising strategy for a synergistic amplification of cellular oxidative stress.


Assuntos
Porfirinas , Porfirinas/farmacologia , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Estresse Oxidativo , Peroxidase , Peroxidases , Catálise , Corantes , Glucose Oxidase , Ácido Hialurônico
6.
BMC Cardiovasc Disord ; 23(1): 122, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890438

RESUMO

BACKGROUND: To investigate the expression of miR-218-5p in atherosclerosis patients and its effect on ox-LDL induced THP-1-derived macrophage inflammatory response. METHODS: RT-qPCR detected the expression of serum miR-218-5p, and the diagnostic value of miR-218-5p was analyzed by ROC curve. Pearson correlation coefficient was used to evaluate the correlation between miR-218-5p and CIMT and CRP. THP-1 cells were treated with ox-LDL to construct foam cell model. The expression of miR-218-5p was regulated by in vitro transfection technique, and the effects of miR-218-5p on cell viability, apoptosis and inflammation were investigated. Luciferase reporter genes were used to analyze target genes of miR-218-5p in cell models. RESULTS: The expression of miR-218-5p in the atherosclerosis cohort was significantly reduced, and miR-218-5p showed a good ability to distinguish patients from healthy people. Correlation analysis showed that the level of miR-218-5p was negatively correlated with the levels of CIMT and CRP. Cytological studies showed that the expression of miR-218-5p in macrophages decreased after ox-LDL induction. ox-LDL treatment on macrophages resulted in decreased cell viability, increased cell apoptosis and production of inflammatory cytokines, which contributed to the exacerbation of plaque formation. However, the above situation was reversed after upregulation of miR-218-5p. Bioinformatics analysis showed that TLR4 may be the target gene of miR-218-5p, and this hypothesis was proved by luciferase reporter gene assay. CONCLUSIONS: The expression of miR-218-5p is reduced in atherosclerosis, and it may regulate the inflammatory response of atherosclerotic foam cells by targeting TLR4, suggesting that miR-218-5p may be a promising target for clinical atherosclerosis therapy.


Assuntos
Aterosclerose , MicroRNAs , Receptor 4 Toll-Like , Humanos , Apoptose , Aterosclerose/metabolismo , Aterosclerose/patologia , Inflamação/genética , Inflamação/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/metabolismo , MicroRNAs/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
7.
J Environ Manage ; 325(Pt A): 116547, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36419283

RESUMO

The mechanisms of phylogenetic turnover of microbial communities to environmental perturbations in sediments remain unclear. In this study, the molecular mechanisms of phylogenetic turnover, and impact of antibiotics and antibiotic resistance genes (ARGs) on the modification of microbial assemblages were unravelled. We investigated 306 ARGs, 8 transposases, and 4 integron integrases, bacteria, and eukaryotic diversity through high-throughput quantitative PCR and illumina sequencing, 21 antibiotics and 3 tetracycline byproducts. The freshwater and estuary ecosystems were mainly dominated by genus Sulfurovum and colonised by closely related species compared with the estuary (closeness centrality = 0.42 vs. 0.46), which was dominated by genus Mycobacterium. Eighty-six percent of the ecological process in the bacterial community was driven by stochastic processes, while the rest was driven by deterministic processes. Environmental-related concentrations of antibiotics (0.15-32.53 ng/g) stimulated the proliferation of ARGs which potentially modulated the microbial community assembly. ARG acquisition significantly (P < 0.001) increased eukaryotic diversity through protection mechanisms. ARGs showed complex interrelationships with the microbial communities, and phylum arthropods and Nematea demonstrated the strongest ARG acquisition potential. This study provides key insights for environmental policymakers into understanding the ecological impact of antibiotics and the role of ARGs in modulating the phylogenetic turnover of microbial communities and trophic transfer mechanisms.


Assuntos
Antibacterianos , Microbiota , Antibacterianos/farmacologia , Antibacterianos/análise , Genes Bacterianos , Filogenia , RNA Ribossômico 16S/genética , Farmacorresistência Bacteriana , Biodiversidade , Bactérias/genética
8.
Sci Total Environ ; 851(Pt 2): 158369, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36049676

RESUMO

The changes in the aquatic environmental conditions often influence the microbial community assemblages and genome repertoire. Studies investigating the aquatic diversity and ecosystem services were primarily conducted in horizontal environments while neglecting the microbial phylogenetic divergences, biotrophic interactions, and eco-sustainability at water vertical layers. We investigated the mechanisms of microbial transitions, and the ecological significance of water depth layers in the estuary and marine ecosystems. The results demonstrated that the salinity and turbidity increased with increasing water depth (0-50 m), while temperature and pH decreased significantly. The bacterial and eukaryotic diversity and composition significantly increased with an elevating water depth. Bacterial phyla such as Desulfobacterota, Acidobacteriota, Myxococcota, Gemmatimonadota, Campilobacterota, and Latescibacterota were increased significantly. However, niche preference occurred, and some microbes showed differential nestedness at water vertical layers. In the eukaryotic community, Eustigmatales group were the only clades predominantly phylogenetically nested at the surface water depth. c_Conoidasida, o_Gregarinasina, f_Eugregarinorida, and g_Lankesteria were the most predominant at the middle depth. While Mediophyceae clades, p_SAR, and the Animalia clades were the most predominant groups nested at the bottom depths. The microbial interaction, structure, and stability were increased with increasing depth. The vertical phylogenetic turnover of the microbial community was related to the feeding mechanisms. Phototrophic organisms were particularly adapted at the surface, and middle depth by parasitic and pathogenic organisms, while the bottom was inhabited by diatoms, decomposers, and detritus protists. This study demonstrated that the bottom depth was the most ecologically stable area with more profound ecosystem services.


Assuntos
Diatomáceas , Microbiota , Ecossistema , Estuários , Filogenia , Bactérias , Eucariotos , Água , Biodiversidade
9.
Chemosphere ; 305: 135428, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35760129

RESUMO

The ecological impacts of antibiotics and antibiotic resistance genes (ARGs) on water ecology remain elusive in natural environments. We investigated the influence of antibiotics, ARGs and salinity gradient on the surface water ecosystem. Cefquinome (104.2 ± 43.6 ng/L) and cefminox (16.2 ± 7.50 ng/L) cephalosporins were predominant in all sites. Antibiotic contamination was increased in the estuary ecosystems compared to the freshwater ecosystems by 6%. Bacterial diversity could resist changes in salinity, but the relative abundance of some bacterial genera; Pseudoalteromonas, Glaciecola, norank_f__Arcobacteraceae, and Pseudohongiella was increased in the estuary zone (salinity>0.2%). The eukaryotic composition was increased in the subsaline environments (<0.2%), but the higher salinity in the saline zone inhibited the eukaryotic diversity. The relative abundance of ARGs was significantly higher in the estuary than in freshwater ecosystems, and ARGs interactions and mobile elements (aac(6')-Ib(aka_aacA4)-01, tetR-02, aacC, intI1, intI-1(clinic), qacEdelta1-01, and strB) were the predominant factors responsible for the ARGs propagation. Antibiotics associated with corresponding and non-corresponding ARGs and potentially created an adverse environment that increased the predation and pathogenicity of the aquatic food web and inhibited the metabolic functions. Surface water are first-line-ecosystems receiving antibiotics and ARGs hence our findings provided vital insights into understanding their ecological consequences on surface water ecosystems.


Assuntos
Antibacterianos , Microbiota , Antibacterianos/análise , Antibacterianos/farmacologia , Bactérias/genética , Genes Bacterianos , Salinidade , Água
10.
Exp Ther Med ; 23(3): 205, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35126708

RESUMO

Doxorubicin (DOX) has powerful anticancer properties, but its clinical application is affected by its serious cardiotoxicity. Wogonin (WG) has been shown to have marked cardiovascular protection potential. However, it is not known whether this potential can protect the heart from DOX damage. The aim of the present study was to investigate whether WG could ameliorate the cardiotoxicity of DOX. DOX and WG were used to establish a model of cardiac damage. Echocardiography, brain natriuretic peptide, creatine kinase MB and cardiac troponin T were used to detect the degree of cardiac damage. The levels of superoxide dismutase, malondialdehyde, glutathione and catalase in serum were measured to observed oxidative stress state. The mRNA levels of cyclophilin D, voltage-dependent anion-selective channel 1 and adenine nucleotide transporter 1 were detected by reverse transcription-quantitative PCR. Western blotting was used to detect the expression of cytochrome c in mitochondria and cytoplasm and cleaved-caspase-9 and pro/cleaved-caspase-3 in cytoplasm in cardiac tissue and primary cardiomyocytes to verify the related signaling pathways. DOX rats showed a series of cardiac damage. However, these damages were alleviated following WG treatment. Further studies showed that WG antagonized DOX cardiotoxicity through inhibiting the release of cytochrome c. WG protected rat heart from DOX damage. The mechanism may be closely related to inhibiting the release of cytochrome c from mitochondria and reducing cardiomyocyte apoptosis caused by caspase activation.

12.
Front Pharmacol ; 12: 733805, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721023

RESUMO

Objective: Pirarubicin (THP), one of the anthracycline anticancer drugs, is widely used in the treatment of various cancers, but its cardiotoxicity cannot be ignored. Schisandrin B (SchB) has the ability to upregulate cellular antioxidant defense mechanism and promote mitochondrial function and antioxidant status. However, it has not been reported whether it can resist THP-induced cardiotoxicity. The aim of this study was to investigate the effect of SchB on THP cardiotoxicity and its mechanism. Methods: The rat model of cardiotoxicity induced by THP was established, and SchB treatment was performed at the same time. The changes of ECG, cardiac coefficient, and echocardiogram were observed. The changes of myocardial tissue morphology were observed by H&E staining. Apoptosis was detected by TUNEL. The levels of LDH, BNP, CK-MB, cTnT, SOD, and MDA in serum were measured to observe the heart damage and oxidative stress state of rats. The expression of cleaved-caspase 9, pro/cleaved-caspase 3, Bcl-2/Bax, and cytosol and mitochondrial Cyt C and Bax was evaluated by western blot. H9c2 cardiomyocytes were cocultured with THP, SchB, and mPTP inhibitor CsA to detect the production of ROS and verify the above signaling pathways. The opening of mPTP and mitochondrial swelling were detected by mPTP kit and purified mitochondrial swelling kit. Results: After 8 weeks, a series of cardiotoxicity manifestations were observed in THP rats. These adverse effects can be effectively alleviated by SchB treatment. Further studies showed that SchB had strong antioxidant and antiapoptotic abilities in THP cardiotoxicity. Conclusion: SchB has an obvious protective effect on THP-induced cardiotoxicity. The mechanism may be closely related to the protection of mitochondrial function, inhibition of mPTP opening, and alleviation of oxidative stress and apoptosis of cardiomyocytes.

13.
Mater Sci Eng C Mater Biol Appl ; 128: 112341, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474891

RESUMO

In order to maximize the retention of the photodynamic therapy (PDT) efficacy, while avoiding the dilemma of hypoxia and high reducing substances in tumor tissue, fluoropolymers were synthesized in a simple and effective methods. Fluorous effect with good oxygen carrying capacity was endowed by the fluorine-containing section in fluoropolymers and the perfluorodecalin (PFD) together, the reaction site with GSH was provided by the disulfide bond, which enhanced PDT efficiency through the sequential "AND" logic gate design. Two kind of fluorine-containing nanocarriers (M-Ce6 and E-Ce6) were obtained by solvent evaporation or ultrasound emulsification with PFD, respectively. In vitro, both of them showed promising high ROS generation under photoirradiation. Benefiting by cavitation effects, E-Ce6 had a more significant statistical difference in cellular uptake. Furthermore, the cells incubating with E-Ce6 hardly were noticed that the hypoxia signal appeared under hypoxia, while reducing the intracellular GSH content by more than 15%. Through the sequential "AND" logic gate design, ROS production even under hypoxia and GSH conditions of E-Ce6 was also almost 1.5 times that of Ce6 under normoxia. Enhancing effect of E-Ce6 was 13.47 times and 6.85 times, while selectivity ratio reached 5.13 times and 4.81 times compared with Ce6 and M-Ce6. The two-pronged strategy showed a high potential for delivering the Ce6 to deep inside of cancer cells and killing it in the simulated tumor by PDT. These above results demonstrated the potential of E-Ce6, as oxygen self-sufficiency and GSH depletion nanocarriers for combined enhancement of photodynamic therapy.


Assuntos
Fotoquimioterapia , Porfirinas , Linhagem Celular Tumoral , Flúor , Oxigênio , Fármacos Fotossensibilizantes/farmacologia
14.
Res Int Bus Finance ; 58: 101484, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34518717

RESUMO

COVID-19 is the first global scale crisis since the inception of Bitcoin. We compare the contagion phenomenon of Bitcoin and other financial markets or assets pre and during the COVID-19 shock in both contemporaneous and non-contemporaneous manner. This paper uses the directed acyclic graph (DAG), spillover index, and network topology to provide strong evidence on the directional contagion outcomes of Bitcoin and other assets. The empirical results show that the contagion effect between Bitcoin and developed markets is strengthened during the COVID-19 crisis. Particularly, European market has a dominant role. Excluding Bitcoin's own shocks, United State and European markets are the main contagion sources to Bitcoin. European market also works as a intermediary to deliver infectious from United State and market fear. The findings show that gold always has contagion effect with Bitcoin, while gold, US dollar and bond market are the contagion receivers of Bitcoin under the shock of COVID-19. The empirical results further proved the safe haven, hedge and diversifier potential of Bitcoin in economic stable time, but also shows that the sustainability of these properties is undermined during the market turmoil.

15.
Mol Med Rep ; 24(4)2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34368866

RESUMO

Pirarubicin (THP), one of the anthracycline anticancer drugs, is widely used in the treatment of various types of cancer, but its cardiotoxicity cannot be ignored. Canagliflozin, the first sodium­glucose co­transporter­2 inhibitor approved by the USA FDA, has been shown to have a significant effect on cardiovascular damage caused by diabetes. However, it has not been reported whether it can resist THP­induced cardiotoxicity. The aim of the present study was to investigate the effect of canagliflozin on THP­induced cardiotoxicity and its mechanism. A rat model of cardiotoxicity induced by THP was established and canagliflozin treatment was performed at the same time. The changes of electrocardiography, cardiac coefficient and echocardiogram were observed. The levels of lactate dehydrogenase, brain natriuretic peptide, creatine kinase MB, cardiac troponin T, superoxide dismutase (SOD) and malondialdehyde were detected. The expression of SOD2, NADPH oxidase 2, pro/cleaved­caspase­ and Bcl­2/Bax were evaluated by western blotting. The primary culture of cardiomyocytes was prepared to explore the effect in vitro. After eight weeks, a series of cardiotoxicity manifestations were observed in THP rats. However, canagliflozin treatment had no significant effect on the above adverse reactions. Similarly, further studies showed that canagliflozin had no significant effect on THP­induced cardiomyocyte injury in vitro. The present study showed that there was no significant protective effect of canagliflozin on THP­induced cardiotoxicity and cardiomyocyte injury.


Assuntos
Canagliflozina/metabolismo , Canagliflozina/farmacologia , Cardiotônicos/farmacologia , Cardiotoxicidade/tratamento farmacológico , Doxorrubicina/análogos & derivados , Doxorrubicina/efeitos adversos , Animais , Encéfalo/metabolismo , Canagliflozina/uso terapêutico , Cardiotônicos/uso terapêutico , Cardiotoxicidade/patologia , Creatina Quinase Forma MB/metabolismo , Modelos Animais de Doenças , L-Lactato Desidrogenase/metabolismo , Masculino , Malondialdeído/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo
16.
J Physiol Biochem ; 77(4): 577-587, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34146302

RESUMO

To investigate whether miR-124-3p influences cell apoptosis, inflammatory response, and oxidative stress in rats with acute myocardial infarction (AMI) by mediating the SIRT1/FGF21/CREB/PGC1α pathway. A dual-luciferase reporter gene assay was performed to verify the relationship between miR-124-3p and SIRT1. AMI rats were established via coronary artery ligation after injection with agomiR-124-3p, antagomiR-124-3p, and/or SIRT1 siRNA, and triphenyltetrazolium chloride (TTC), HE, and TUNEL stainings were performed. Bio-Plex rat cytokine assays were performed to determine proinflammatory factor levels. qRT-PCR and Western blotting were used to examine the mRNA and protein expression, respectively. The activity levels of antioxidant enzymes in myocardial tissues were also measured. miR-124-3p was confirmed to target SIRT1 in the H9C2 cells. AMI rats exhibited increased miR-124-3p expression and decreased SIRT1 expression in myocardial tissues. HE staining showed a disorganized cell arrangement and inflammatory cell infiltration in the myocardial tissues of the AMI rats, which was more severe in the rats injected with SIRT1 and agomiR-124-3p but was ameliorated in those treated with antagomiR-124-3p. Moreover, the AMI rats in the antagomiR-124-3p group presented with a reduction in infarct area with an increase in antioxidant enzyme activity, Bcl-2 expression, and activation of the FGF21/CREB/PGC1α pathway, as well as a decrease in cell apoptosis rate, Bax and Caspase-3 expression, and levels of proinflammatory factors, effects that were reversed by si-SIRT1. Inhibiting miR-124-3p expression may activate the FGF21/CREB/PGC1α pathway to reduce cell apoptosis, alleviate the inflammatory response, and attenuate oxidative stress in AMI rats by targeting SIRT1. Graphical abstract.


Assuntos
MicroRNAs , Infarto do Miocárdio , Animais , Apoptose , Fatores de Crescimento de Fibroblastos , MicroRNAs/genética , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Piroptose , Ratos , Ratos Sprague-Dawley , Sirtuína 1/genética , Sirtuína 1/metabolismo
17.
Iran J Basic Med Sci ; 24(4): 493-498, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34094031

RESUMO

OBJECTIVES: Kaempferide (Ka), a major natural active component of Tagetes erecta L, has numerous pharmacological effects such as anti-obesity, anticancer, and anti-hypertension. However, there is no clear evidence that Ka is directly related to inflammation and oxidative stress in obese mice. We aimed to explore the effects of Ka on inflammation and oxidative stress and its mechanism. MATERIALS AND METHODS: The obese mice were induced by a high-fat diet (HFD). The anti-obesity effect was tested by liver and body weight, liver and adiposity index, and white adipose tissue. Blood sample analysis was used to detect the hypolipidemic and hypoglycemic effects. The anti-oxidation effect was assessed using GSH, SOD, MDA, CAT, T-AOC, and other indicators. The anti-inflammatory effect was assessed using TNF-α, MCP-1, and Adiponectin. Western blot and Real-Time PCR were used to evaluate the related signaling pathways. RESULTS: Obesity, glycolipid metabolism disorder, inflammation, and oxidative stress developed in HFD mice. These changes can be effectively alleviated by Ka treatment for 16 weeks. Further studies have suggested that these beneficial effects of Ka may be associated with inhibition of the TLR4/IκBα/NF-κB signaling pathways. CONCLUSION: Ka possesses important anti-obesity, hypoglycemic, and hypolipidemic effects. The mechanism may be causally associated with the TLR4/IκBα/NF-κB signaling pathway, which improves inflammation and oxidative stress.

18.
ACS Biomater Sci Eng ; 7(4): 1394-1402, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33689270

RESUMO

Chemodynamic therapy (CDT) is a kind of method utilizing hydroxyl radicals (•OH) generated by Fenton or Fenton-like reactions in situ to kill tumor cells. Copper, a cofactor of many intracellular enzymes, which has good biocompatibility, is a transition metal with extremely high efficiency in the Fenton-like reaction. However, when the intracellular free copper exceeds the threshold, it will bring serious side effects. Hence, we used the chelation between glutathione (GSH) and copper ions to produce a nanocatalytic drug, which was named as Cu-GSSG NPs, to fix free copper. With the aid of hydrogen peroxide (H2O2) in vitro, Cu-GSSG NPs catalyzed it to •OH radicals, which could be confirmed by the electron spin resonance spectrum and the degradation experiment of methylene blue. Based on these results, we further studied the intracellular properties of Cu-GSSG NPs and found that Cu-GSSG NPs could react with the overexpressed H2O2 in tumor cells to produce •OH radicals effectively by the Fenton-like reaction to induce cell death. Therefore, Cu-GSSG NPs could be a kind of potential "green" nanocatalytic drug with good biocompatibility to achieve CDT.


Assuntos
Antineoplásicos , Cobre , Células A549 , Linhagem Celular Tumoral , Glutationa , Humanos , Peróxido de Hidrogênio
19.
Life Sci ; 270: 119133, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33508298

RESUMO

AIMS: Kaempferide (Ka, 3,5,7-trihydroxy-4'-methoxyflavone), an active ingredient of Tagetes erecta L., has been demonstrated to possess many pharmacological effects, including antioxidant, anti-inflammation, anticancer and antihypertension in previous study. However, there is no evidence of Ka on metabolic disorder in former studies. This study investigated the effects of Ka on glycolipid metabolism and explored the underlying mechanisms of action in vivo and vitro. MATERIALS AND METHODS: The mouse model of glycolipid metabolism disorder was induced by high-fat diet (HFD). The effects of Ka were evaluated on bodyweight, lipid metabolism and glucose metabolism. Hypolipidemic effect was examined by blood sample analysis. The hypoglycemic effect was detected by several indicators, like blood glucose, serum insulin, HOMA index and intraperitoneal glucose tolerance tests (IPGTT). The signaling pathways of lipid metabolism (PPARγ/LXRα/ABCA1) and glucose metabolism (PPARγ/PI3K/AKT) were evaluated using Real-Time PCR and Western blot. The primary culture of hepatocyte was prepared to confirm the target of Ka by co-culturing with PPARγ agonist or inhibitor. KEY FINDINGS: The HFD mice developed obesity, hyperlipidemia, hyperglycemia and insulin resistance. Administration of Ka at a dose of 10 mg/kg.BW for 16 weeks effectively attenuated these changes. Further studies revealed the hypolipidemic and hypoglycemic effects of Ka depended on the activation of PPARγ/LXRα/ABCA1 and PPARγ/PI3K/AKT pathways, respectively. The primary hepatocyte test, co-cultured with PPARγ agonists or inhibitors, further confirmed the above signaling pathway and key protein. SIGNIFICANCE: These results suggested that Ka played an important role in improving glycolipid metabolism disorder. These favorable effects were causally associated with anti-obesity. The underlying mechanisms might have to do with the activation of the PPARγ and its downstream signaling pathway. Our study helped to understand the pharmacological actions of Ka, and played a role for Ka in the effective treatment of obesity, diabetes, nonalcoholic hepatitis and other metabolic diseases.


Assuntos
Quempferóis/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , PPAR gama/metabolismo , Adipócitos/metabolismo , Animais , Glicemia/metabolismo , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Glicolipídeos/metabolismo , Hiperlipidemias/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Quempferóis/metabolismo , Fígado/metabolismo , Masculino , Doenças Metabólicas/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , PPAR gama/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
20.
Exp Ther Med ; 20(4): 3709-3719, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32855722

RESUMO

Oxidative stress and apoptosis serve an important role in the development of pressure overload-induced cardiac remodelling. Carnosic acid (CA) has been found to exert antioxidant and anti-apoptotic effects. The present study investigated the underlying mechanism of CA protection and whether this effect was exerted against pressure overload-induced cardiac remodelling. Aortic banding (AB) surgery was performed to induce cardiac remodelling. Mice were randomly divided into four groups (n=15/group): i) Sham + vehicle; ii) sham + CA; iii) AB + vehicle; and iv) AB + CA. After 2 days of AB, 50 mg kg CA was administered orally for 12 days. Echocardiography, histological analysis and molecular biochemistry techniques were performed to evaluate the roles of CA. CA treatment decreased cardiac hypertrophy, fibrosis, oxidative stress and apoptosis in mice challenged with pressure overload. CA also decreased the cross-sectional area of cardiomyocytes and the mRNA and protein expression levels of hypertrophic markers. Furthermore, CA treatment decreased collagen deposition, α-smooth muscle actin expression and the mRNA and protein expression of various fibrotic markers. Additionally, CA reversed the AB-mediated increase in NAPDH oxidase (NOX) 2, NOX4 and 4-hydroxynonenal levels. The number of apoptotic cells was decreased following CA treatment following under conditions of pressure overload. CA also suppressed the activation of AKT and glycogen synthase kinase 3 ß (GSK3ß) in mice challenged with AB. The present results suggested that CA could inhibit pressure overload-induced cardiac hypertrophy and fibrosis by suppressing the AKT/GSK3ß/NOX4 signalling pathway. Therefore, CA may be a promising therapy for cardiac remodelling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...