Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
RSC Adv ; 12(46): 29852-29864, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36321088

RESUMO

The rheological and filtration performance of drilling fluids greatly depends on the additives used. To address the negative impact on the drilling fluid performance stemming from electrolyte contamination, a sustainable sodium alginate (SA) biopolymer was employed as an additive in water-based drilling fluids to overcome the performance deterioration caused by the polyelectrolyte effect under salt contamination. The results demonstrated that SA performs better than sodium carboxymethyl cellulose (Na-CMC) and polyanionic cellulose (PAC-LV), the widely used drilling fluid additives. Although exposed to highly concentrated salt contamination, the addition of SA can mitigate viscosity variation and maintain a lower filtration volume of a base fluid (BF), whereas an advanced variation in CMC/BF and PAC/BF was observed. The possible rheology and filtration mechanism of SA under highly concentrated salt contamination were investigated through zeta potential, particle size distribution, and scanning electron microscopy (SEM). The results revealed that the anchoring groups on the SA molecular chain enable them to strongly adsorb on the negatively charged bentonite surface via hydrogen and ionic bond interactions, leading to a significant improvement in both rheological and filtration performance. Therefore, SA with excellent salt tolerance and sustainability confers practical applicability that could extend to the preparation of saltwater-based and other inhibitive drilling fluids.

2.
Langmuir ; 38(41): 12539-12550, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36213955

RESUMO

Wettability alteration of the shale surface is a potential strategy to address wellbore instability issues arising from shale hydration. In this study, we have explored an oil-in-water (o/w) nanoemulsion, in which soluble silicate (lithium silicate and potassium methyl silicate) as the aqueous phase and organosilanes (3-methacryloxypropyltrimethoxysilane (KH570) and n-octyltriethoxysilane (n-OTES)) as the oil phase, as a shale inhibitor via forming a hydrophobic "artificial borehole shield" in situ on shale surfaces to maintain wellbore stability in high-temperature drilling operations. The shale dispersion test showed the highest shale recovery of nanoemulsion was up to 106.4% compared to that of water (20%), and recovered shale cuttings remained at the original integrity after hot rolling at 180 °C, indicating superior inhibition performance and resistance to elevated temperatures. Moreover, recovered shale cuttings manifested water repellency upon reimmersion in water, ascribed to the hydrophobic film, preventing water from permeating into the shale. The results of the contact angle measurement elucidated that the film wettability, from hydrophilic to superhydrophobic (ranging from 9.6-154°), can be achieved by altering the n-OTES-to-KH570 weight ratio from 0.2 to 2.25, and the film with the highest hydrophobicity (154°) and the lowest surface energy (3.17 mJ·m-2) can be obtained at a ratio of 1.3. Scanning electron microscopy images demonstrated that the superhydrophobic film was composed of tightly stacked reticulate nanofilaments with a diameter of 7-17 nm and several micrometers in length and overlapped well-distributed nanospheres with a diameter of 30 nm. X-ray diffraction and Fourier transform infrared spectroscopy confirmed the film was crystalline silica grafted with long-chain alkylsiloxane. It is assumed that the unique micronanostructure combined with the siloxane modification contributed to the hydrophobicity. Consequently, this study provides a potential alternative solution for wellbore stabilization in deep well drilling engineering by employing nanoemulsion as a shale hydration inhibitor via forming a protective film with controllable wettability. Furthermore, it can be conferred a practical application due to easily available, less hazardous, and cost-effective materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...