Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891794

RESUMO

The chiral H8-BINOL derivatives R-1 and R-2 were efficiently synthesized via a Suzuki coupling reaction, and they can be used as novel dialdehyde fluorescent probes for the enantioselective recognition of R/S-2-amino-1-phenylethanol. In addition, R-1 is much more effective than R-2. Scanning electron microscope images and X-ray analyses show that R-1 can form supramolecular vesicles through the self-assembly effect of the π-π force and strong hydrogen bonding. As determined via analysis, the fluorescence of the probe was significantly enhanced by mixing a small amount of S-2-amino-1-phenylethanol into R-1, with a redshift of 38 nm, whereas no significant fluorescence response was observed in R-2-amino-1-phenylethanol. The enantioselective identification of S-2-amino-1-phenylethanol by the probe R-1 was further investigated through nuclear magnetic titration and fluorescence kinetic experiments and DFT calculations. The results showed that this mechanism was not only a simple reactive probe but also realized object recognition through an ICT mechanism. As the intramolecular hydrogen bond activated the carbonyl group on the probe R-1, the carbonyl carbon atom became positively charged. As a strong nucleophile, the amino group of S-2-amino-1-phenylethanol first transferred the amino electrons to a carbonyl carbocation, resulting in a significantly enhanced fluorescence of the probe R-1 and a 38 nm redshift. Similarly, S-2-amino-1-phenylethanol alone caused severe damage to the self-assembled vesicle structure of the probe molecule itself due to its spatial structure, which made R-1 highly enantioselective towards it.


Assuntos
Amino Álcoois , Ligação de Hidrogênio , Estereoisomerismo , Amino Álcoois/química , Corantes Fluorescentes/química , Cinética , Estrutura Molecular , Modelos Moleculares , Naftóis
2.
Micromachines (Basel) ; 14(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36984907

RESUMO

A novel triazole fluorescent sensor was efficiently synthesized using binaphthol as the starting substrate with 85% total end product yield. This chiral fluorescence sensor was proved to have high specific enantioselectivity for lysine. The fluorescence intensity of R-1 was found to increase linearly when the equivalent amount of L-lysine (0-100 eq.) was gradually increased in the system. The fluorescence intensity of L-lysine to R-1 was significantly enhanced, accompanied by the red-shift of emission wavelength (389 nm to 411 nm), which was attributed to the enhanced electron transfer within the molecular structure, resulting in an ICT effect, while the fluorescence response of D-lysine showed a decreasing trend. The enantioselective fluorescence enhancement ratio for the maximum fluorescence intensity was 31.27 [ef = |(IL - I0)/(ID - I0)|, 20 eq. Lys], thus it can be seen that this fluorescent probe can be used to identify and distinguish between different configurations of lysine.

3.
Molecules ; 27(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36500558

RESUMO

An imidazole bromide fluorescent probe (R)-1 based on chiral H8-BINOL was synthesized with a high yield; it was found to have good enantioselective recognition of lysine and phenylalanine using fluorescence analysis. When L-lysine was recognized, the enantioselective fluorescence enhancement ratio was 2.7 (ef = IL - I0/ID - I0, ef = 2.7, 20 eq Lys); as the amount of L-Lys increased, a distinct red shift was observed (the wavelength varied by 55.6 nm, 0-100 eq L-Lys), whereas D-Lys had a minimal red shift. The generation of this red shift phenomenon was probably due to the ICT effect; the probe's intramolecular charge transfer was affected after (R)-1 bound to L-Lys, and this charge transfer was enhanced, leading to a red shift in fluorescence. In addition to the enantioselective recognition of lysine, phenylalanine was also recognized; the enantioselective fluorescence enhancement ratio was 5.1 (ef = IL - I0/ID - I0, ef = 5.1, 20 eq Phe).


Assuntos
Corantes Fluorescentes , Lisina , Fenilalanina , Espectrometria de Fluorescência , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...